representations ignore specific details and facilitate generalization. Here we consider the learning of abstract representations in a multi-modal setting with two or more input modalities. We treat the problem as a lossy compression problem and show that generic lossy compression of multimodal sensory input naturally extracts abstract representations that tend to strip away modalitiy specific details and preferentially retain information that is shared across the different modalities. Furthermore, we propose an architecture to learn abstract representations by identifying and retaining only the information that is shared across multiple modalities while discarding any modality specific information.
Recent advances in artificial neural networks enabled the quick development of new learning algorithms, which, among other things, pave the way to novel robotic applications. Traditionally, robots are programmed by human experts so as to accomplish pre-defined tasks. Such robots must operate in a controlled environment to guarantee repeatability, are designed to solve one unique task and require costly hours of development. In developmental robotics, researchers try to artificially imitate the way living beings acquire their behavior by learning. Learning algorithms are key to conceive versatile and robust robots that can adapt to their environment and solve multiple tasks efficiently. In particular, Reinforcement Learning (RL) studies the acquisition of skills through teaching via rewards. In this thesis, we will introduce RL and present recent advances in RL applied to robotics. We will review Intrinsically Motivated (IM) learning, a special form of RL, and we will apply in particular the Active Efficient Coding (AEC) principle to the learning of active vision. We also propose an overview of Hierarchical Reinforcement Learning (HRL), an other special form of RL, and apply its principle to a robotic manipulation task.
We present a model of the self-calibration of active binocular vision comprising the simultaneous learning of visual representations, vergence, and pursuit eye movements. The model follows the principle of Active Efficient Coding (AEC), a recent extension of the classic Efficient Coding Hypothesis to active perception. In contrast to previous AEC models, the present model uses deep autoencoders to learn sensory representations. We also propose a new formulation of the intrinsic motivation signal that guides the learning of behavior. We demonstrate the performance of the model in simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.