The area under the ROC (Receiver Operating Characteristics) curve, or simply AUC, has been recently proposed as an alternative single-number measure for evaluating the predictive ability of learning algorithms. However, no formal arguments were given as to why AUC should be preferred over accuracy. In this paper, we establish formal criteria for comparing two different measures for learning algorithms, and we show theoretically and empirically that AUC is, in general, a better measure (defined precisely) than accuracy. We then reevaluate well-established claims in machine learning based on accuracy using AUC, and obtain interesting and surprising new results. We also show that AUC is more directly associated with the net profit than accuracy in direct marketing, suggesting that learning algorithms should optimize AUC instead of accuracy in real-world applications.
Abstract. Predictive accuracy has been widely used as the main criterion for comparing the predictive ability of classification systems (such as C4.5, neural networks, and Naive Bayes). Most of these classifiers also produce probability estimations of the classification, but they are completely ignored in the accuracy measure. This is often taken for granted because both training and testing sets only provide class labels. In this paper we establish rigourously that, even in this setting, the area under the ROC (Receiver Operating Characteristics) curve, or simply AUC, provides a better measure than accuracy. Our result is quite significant for three reasons. First, we establish, for the first time, rigourous criteria for comparing evaluation measures for learning algorithms. Second, it suggests that AUC should replace accuracy when measuring and comparing classification systems. Third, our result also prompts us to re-evaluate many well-established conclusions based on accuracy in machine learning. For example, it is well accepted in the machine learning community that, in terms of predictive accuracy, Naive Bayes and decision trees are very similar. Using AUC, however, we show experimentally that Naive Bayes is significantly better than the decision-tree learning algorithms.
Research in proteomics requires powerful database-searching software to automatically identify protein sequences in a complex protein mixture via tandem mass spectrometry. In this paper, we describe a novel database-searching software system called pFind (peptide/protein Finder), which employs an effective peptide-scoring algorithm that we reported earlier. The pFind server is implemented with the C++ STL, .Net and XML technologies. As a result, high speed and good usability of the software are achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.