Electronic, vibrational, and anharmonic studies on some binary clathrate AxSi136 (A = Na, K, Rb, Cs; 0 < x ≤ 24) are theoretically presented. The Fermi energy lies in the range of 1.1 eV to 1.4 eV for NaxSi136 and increases as stoichiometry (x) is tuned from 8 to 12 to 16. The determined isotropic “Mexican-hat” shape of the guest-host potential describing Na motion in the Si28 cage indicates the “off-center” position when the temperature is elevated beyond zero. Accordingly, the calculated Na “off-center” displacements correlate well with the X-Ray Diffraction (XRD) data (0.4 Å–0.5 Å) for a similar composition range (0 < x < 24). The lack of first-principles analysis on quartic anharmonicity motivates us to initiate a self-consistent model to examine the temperature-dependent rattling frequency Ω(T) of the guest (Na, Rb). The predicted values of Ω(T) for Na24Si136 at 300 K are significantly higher (approximately six times larger) than the value at absolute zero, which contrasts with the case of Rb8Si136. Moreover, underestimation of the isotropic atomic displacement parameter Uiso is caused by the temperature-dependent quartic anharmonicity of Na, and this discrepancy might be offset by the square of the “off-center” displacement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.