Widespread contamination of ecosystems with pesticides threatens non-target organisms. However, the extent to which life-history traits affect pesticide exposure and resulting risk in different landscape contexts remains poorly understood. We address this for bees across an agricultural land-use gradient based on pesticide assays of pollen and nectar collected by Apis mellifera, Bombus terrestris and Osmia bicornis, representing extensive, intermediate and limited foraging traits. We found that extensive foragers (A. mellifera) experienced the highest pesticide risk—additive toxicity-weighted concentrations. However, only intermediate (B. terrestris) and limited foragers (O. bicornis) responded to landscape context—experiencing lower pesticide risk with less agricultural land. Pesticide risk correlated among bee species and between food sources and was greatest in A. mellifera-collected pollen—useful information for future postapproval pesticide monitoring. We provide foraging trait- and landscape-dependent information on the occurrence, concentration and identity of pesticides that bees encounter to estimate pesticide risk, which is necessary for more realistic risk assessment and essential information for tracking policy goals to reduce pesticide risk.
Premise Many animals provide ecosystem services in the form of pollination including honeybees, which have become globally dominant floral visitors. A rich literature documents considerable variation in single visit pollination effectiveness, but this literature has yet to be extensively synthesized to address whether honeybees are effective pollinators. Methods We conducted a hierarchical meta‐analysis of 168 studies and extracted 1564 single visit effectiveness (SVE) measures for 240 plant species. We paired SVE data with visitation frequency data for 69 of these studies. We used these data to ask three questions: (1) Do honeybees (Apis mellifera) and other floral visitors differ in their SVE? (2) To what extent do plant and pollinator attributes predict differences in SVE between honeybees and other visitors? (3) Is there a correlation between visitation frequency and SVE? Results Honeybees were significantly less effective than the most effective non‐honeybee pollinators but were as effective as the average pollinator. The type of pollinator moderated these effects. Honeybees were less effective compared to the most effective and average bird and bee pollinators but were as effective as other taxa. Visitation frequency and SVE were positively correlated, but this trend was largely driven by data from communities where honeybees were absent. Conclusions Although high visitation frequencies make honeybees important pollinators, they were less effective than the average bee and rarely the most effective pollinator of the plants they visit. As such, honeybees may be imperfect substitutes for the loss of wild pollinators, and safeguarding pollination will benefit from conservation of non‐honeybee taxa.
Nutritional stability – a food system’s capacity to provide sufficient nutrients despite disturbance – is an important, yet challenging to measure outcome of diversified agriculture. Using 55 years of data across 184 countries, we assemble 22,000 bipartite crop-nutrient networks to quantify nutritional stability by simulating crop and nutrient loss in a country, and assess its relationship to crop diversity across regions, over time and between imports versus in country production. We find a positive, saturating relationship between crop diversity and nutritional stability across countries, but also show that over time nutritional stability remained stagnant or decreased in all regions except Asia. These results are attributable to diminishing returns on crop diversity, with recent gains in crop diversity among crops with fewer nutrients, or with nutrients already in a country’s food system. Finally, imports are positively associated with crop diversity and nutritional stability, indicating that many countries’ nutritional stability is market exposed.
Agricultural landscapes across the planet have replaced natural habitat with crop production that is less diverse at field and landscape scales. Loss of cropland heterogeneity can increase pest colonization rates and decrease predation rates, thereby exacerbating pest pressure and leading to increased use of pesticides. Linking landscape pattern, crop pest pressure, and pesticide use is emerging as critical step for understanding the benefits, and potential trade-offs, of diversified agriculture. We advance this work by exploring how cropland heterogeneity drives pesticide use, and whether this effect is modified by pesticide class (i.e. fungicide, herbicide or insecticide). We focus on a diverse growing region, California’s Central Valley, and use spatial auto-regressive models to test for consistent class-based differences in the relationship between pesticide use and cropland heterogeneity (i.e. mean field size and landscape-level crop diversity). We find reduced pesticide use, in terms of both frequency and intensity of application, in diversified, spatially-heterogenous landscapes. Additionally, we see (a) more consistent responses of fungicides and insecticides to landscape pattern, (b) pesticide use increases as cropland becomes more homogenous with respect to crop identity, and (c) this effect is more consistent for perennial crops than annual crops. The modifying influence of pesticide class is largely consistent with expectations from ecological theory. Our results support increasing focus on whether enhancing the heterogeneity of the crop mosaic itself can benefit biodiversity, ecosystem services, and human well-being.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.