The urban sound environment of New York City (NYC) can be, amongst other things: loud, intrusive, exciting and dynamic. As indicated by the large majority of noise complaints registered with the NYC 311 information/complaints line, the urban sound environment has a profound effect on the quality of life of the city's inhabitants. To monitor and ultimately understand these sonic environments, a process of long-term acoustic measurement and analysis is required. The traditional method of environmental acoustic monitoring utilizes short term measurement periods using expensive equipment, setup and operated by experienced and costly personnel. In this paper a different approach is proposed to this application which implements a smart, low-cost, static, acoustic sensing device based around consumer hardware. These devices can be deployed in numerous and varied urban locations for long periods of time, allowing for the collection of longitudinal urban acoustic data. The varied environmental conditions of urban settings make for a challenge in gathering calibrated sound pressure level data for prospective stakeholders. This paper details the sensors' design, development and potential future applications, with a focus on the calibration of the devices' Microelectromechanical systems (MEMS) microphone in order to generate reliable decibel levels at the type/class 2 level.
An acoustic survey of secondary schools in England has been undertaken. Room acoustic parameters and background noise levels were measured in 185 unoccupied spaces in 13 schools to provide information on the typical acoustic environment of secondary schools. The unoccupied acoustic and noise data were correlated with various physical characteristics of the spaces. Room height and the amount of glazing were related to the unoccupied reverberation time and therefore need to be controlled to reduce reverberation to suitable levels for teaching and learning. Further analysis of the unoccupied data showed that the introduction of legislation relating to school acoustics in England and Wales in 2003 approximately doubled the number of school spaces complying with current standards. Noise levels were also measured during 274 lessons to examine typical levels generated during teaching activities in secondary schools and to investigate the influence of acoustic design on working noise levels in the classroom. Comparison of unoccupied and occupied data showed that unoccupied acoustic conditions affect the noise levels occurring during lessons. They were also related to the time spent in disruption to the lessons (e.g., students talking or shouting) and so may also have an impact upon student behavior in the classroom.
contributed articles NOISE IS UNWANTED or harmful sound from environmental sources, including traffic, construction, industrial, and social activity. Noise pollution is one of the topmost quality-of-life concerns for urban residents in the U.S., with more than 70 million people nationwide exposed to noise levels beyond the limit the U.S. Environmental Protection Agency (EPA) considers harmful. 12 Such levels have proven effects on health, including sleep disruption, hypertension, heart disease, and hearing loss. 5,11,12 In addition, there is evidence of harmful effects on educational performance, with studies showing noise pollution causing learning and cognitive impairment in children, resulting in BY JUAN P. BELLO, CLAUDIO SILVA, ODED NOV, R. LUKE DUBOIS, ANISH ARORA, JUSTIN SALAMON, CHARLES MYDLARZ, AND HARISH DORAISWAMY key insights ˽ Public exposure to noise is a growing concern in cities, leading to substantial health, educational and economic costs, but noise is ephemeral and invisible, making it dificult for city agencies to monitor it effectively. ˽ An interdisciplinary effort explores new ways to use both fixed and mobile sensors, with output annotated by citizen scientists, for training novel machine-listening models and analyzing spatiotemporal noise patterns. ˽ The resulting fine-grain and aggregate analytics layers help public agencies monitor the local environment and intervene to mitigate noise pollution.
An investigation has been carried out to examine the impact of different levels of classroom noise on adolescents' performance on reading and vocabulary-learning tasks. A total of 976 English high school pupils (564 aged 11 to 13 years and 412 aged 14 to 16 years) completed reading tasks on laptop computers while exposed to different levels of classroom noise played through headphones. The tasks consisted of reading science texts, which were followed by multiple-choice questions probing comprehension and word learning. Number of questions attempted, times taken to read the texts and to answer questions were recorded, as well as correct answers to different types of question. The study consisted of two similar experiments, the first comparing performance in classroom noise at levels of 50 dB LAeq and 70 dB LAeq; and the second at levels of 50 dB LAeq and 64 dB LAeq. The results showed that the performance of all pupils was significantly negatively affected in the 70 dB LAeq condition, for the number of questions attempted and the accuracy of answers to factual and word learning questions. It was harder to discern effects at 64 dB LAeq, this level of noise having a detrimental effect upon the older pupils only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.