A cross-sectional study was performed to identify operation-level risk factors associated with prevalence of antibody to Bunyamwera (BUN) serogroup viruses in sheep in the United States. Sera were obtained from 5150 sheep in 270 operations located in 22 states (three in the west, nine central states, and 10 in the east) and tested at a dilution of 1:20 by a plaque reduction neutralization test (PRNT) using Cache Valley virus (CVV). Antibodies that neutralized CVV were identified in 1455 (28%) sheep. Animal-level seroprevalence was higher in the east (49%) than the central (17%) and western (10%) states. A convenient subset (n = 509) of sera with antibodies that neutralized CVV was titrated and further analyzed by PRNT using all six BUN serogroup viruses that occur in the United States: CVV, Lokern virus (LOKV), Main Drain virus (MDV), Northway virus (NORV), Potosi virus (POTV), and Tensaw virus (TENV). Antibodies to CVV and LOKV were identified in sheep in all three geographic regions; MDV and POTV activity was detected in the central and eastern states, NORV activity was restricted to the west, and antibodies to TENV were not detected in any sheep. Several management factors were significantly associated with the presence of antibodies to BUN serogroup viruses. For instance, sheep housed during the lambing season inside structures that contained four walls and a roof and a door closed most of the time were more likely to be seropositive than other sheep. In contrast, herded/open-range sheep were less likely to be seropositive than their counterparts. These data can be used by producers to implement strategies to reduce the likelihood of BUN serogroup virus infection and improve the health and management practices of sheep.
Previous field and experimental studies have demonstrated that heterosubtypic immunity (HSI) is a potential driver of Influenza A virus (IAV) prevalence and subtype diversity in mallards. Prior infection with IAV can reduce viral shedding during subsequent reinfection with IAV that have genetically related hemagglutinins (HA). In this experiment, we evaluated the effect of HSI conferred by an H3N8 IAV infection against increasing challenge doses of closely (H4N6) and distantly (H6N2) related IAV subtypes in mallards. Two groups of thirty 1-month-old mallards each, were inoculated with 105.9 50% embryo infectious doses (EID50) of an H3N8 virus or a mock-inoculum. One month later, groups of five birds each were challenged with increasing doses of H4N6 or H6N2 virus; age-matched, single infection control ducks were included for all challenges. Results demonstrate that naïve birds were infected after inoculation with 103 and 104 EID50 doses of the H4N6 or H6N2 virus, but not with 102 EID50 doses of either IAV. In contrast, with birds previously infected with H3N8 IAV, only one duck challenged with 104 EID50 of H4N6 IAV was shedding viral RNA at 2 days post-inoculation, and with H6N2 IAV, only birds challenged with the 104 EID50 dose were positive to virus isolation. Viral shedding in ducks infected with H6N2 IAV was reduced on days 2 and 3 post-inoculation compared to control birds. To explain the differences in the dose necessary to produce infection among H3-primed ducks challenged with H4N6 or H6N2 IAV, we mapped the amino acid sequence changes between H3 and H4 or H6 HA on predicted three-dimensional structures. Most of the sequence differences occurred between H3 and H6 at antigenic sites A, B, and D of the HA1 region. These findings demonstrate that the infectious dose necessary to infect mallards with IAV can increase as a result of HSI and that this effect is most pronounced when the HA of the viruses are genetically related.
IntroductionA serological and entomological investigation was performed to monitor for potential Bunyamwera (BUN) serogroup virus activity in Montana.ResultsTo facilitate the serological investigation, sera were collected from 104 sheep in 2013 and 2014 and assayed by plaque reduction neutralization test using all six BUN serogroup viruses known to occur in the United States: Cache Valley virus (CVV), Lokern virus (LOKV), Main Drain virus (MDV), Northway virus, Potosi virus and Tensaw virus. BUN serogroup virus-specific antibodies were detected in 41 (39%) sheep. Of these, three were seropositive for MDV, one was seropositive for CVV, one was seropositive for LOKV and 36 had antibodies to an undetermined BUN serogroup virus. Additionally, 30,606 Culicoides sonorensis were collected in 2013 using Centers for Disease Control and Prevention (CDC) light traps and assayed for cytopathic virus by virus isolation in African Green Monkey kidney (Vero) cells. All midges were negative. Almost one-third of the midges were further tested by reverse transcription-polymerase chain reaction using BUN serogroup virus-reactive primers and all were negative.ConclusionsWe provide evidence of BUN serogroup virus infection in sheep but not C. sonorensis in Montana in 2013-2014. This study also provides the first evidence of CVV, MDV and LOKV activity in Montana.
The hemagglutination inhibition (HI) assay is commonly used to assess the humoral immune response against influenza A viruses (IAV). However, the microneutralization (MN) assay has been reported to have higher sensitivity when testing sera from humans and other species. Our objective was to determine the agreement between MN and HI assays and compare the proportion of positive samples detected by both methods in sera of mallards primary infected with the A/ mallard/MN/Sg-000169/2007(H3N8) virus and subsequently inoculated with homosubtypic or heterosubtypic IAV. Overall, we found poor to fair agreement (PABAK= 0.03-0.35) between MN and HI assays in serum samples collected 2 weeks after H3N8 inoculation; the observed agreement increased to moderate or substantial in samples collected 4 to 5 weeks post-inoculation (WPI) (PABAK=0.52-0.75). The MN assay detected a higher proportion of positive samples compared to HI assays in serum samples collected 2 WPI (P=0.01). This difference was not observed in samples collected 4 WPI. Also, a boosting effect in MN and HI titers was observed when birds were subsequently inoculated with IAV within the same H3 clade. This effect was not observed when birds were challenged with viruses that belong to a different HA clade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.