The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self‐written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field‐of‐view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer‐sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained.
Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run.
Microbial contamination of fuels by fungi and bacteria presents risks of corrosion and fuel system fouling. In this work, a rapid test for the determination of microbial genomic DNA from aqueous fuel extracts is presented. It combines test strips coated with polystyrene core/mesoporous silica shell particles, to the surface of which modified fluorescent molecular beacons are covalently grafted, with a smartphone detection system. In the hairpin loop, the beacons incorporate a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA gene, which is also present to a significant extent in the 18S rRNA gene of fungi, allowing for broadband microbial detection. In the developed assay, the presence of genomic DNA extracts from bacteria and fungi down to ca. 20–50 μg L–1 induced a distinct fluorescence response. The optical read-out was adapted for on-site monitoring by combining a 3D-printed case with a conventional smartphone, taking advantage of the sensitivity of contemporary complementary metal oxide semiconductor (CMOS) detectors. Such an embedded assembly allowed to detect microbial genomic DNA in aqueous extracts down to ca. 0.2–0.7 mg L–1 and presents an important step toward the on-site uncovering of fuel contamination in a rapid and simple fashion.
Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different concentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.