Located in the forelegs, katydid ears are unique among arthropods in having outer, middle, and inner components, analogous to the mammalian ear. Unlike mammals, sound is received externally via two tympanic membranes in each ear and internally via a narrow ear canal (EC) derived from the respiratory tracheal system. Inside the EC, sound travels slower than in free air, causing temporal and pressure differences between external and internal inputs. The delay was suspected to arise as a consequence of the narrowing EC geometry. If true, a reduction in sound velocity should persist independently of the gas composition in the EC (e.g., air, CO2). Integrating laser Doppler vibrometry, microcomputed tomography, and numerical analysis on precise three-dimensional geometries of each experimental animal EC, we demonstrate that the narrowing radius of the EC is the main factor reducing sound velocity. Both experimental and numerical data also show that sound velocity is reduced further when excess CO2 fills the EC. Likewise, the EC bifurcates at the tympanal level (one branch for each tympanic membrane), creating two additional narrow internal sound paths and imposing different sound velocities for each tympanic membrane. Therefore, external and internal inputs total to four sound paths for each ear (only one for the human ear). Research paths and implication of findings in avian directional hearing are discussed.
The use of acoustics in predator evasion is a widely reported phenomenon amongst invertebrate taxa, but the study of ultrasonic anti-predator acoustics is often limited to the prey of bats. Here, we describe the acoustic function and morphology of a unique stridulatory structure – the Ander's organ – in the relict orthopteran Cyphoderris monstrosa (Ensifera, Hagloidea). This species is one of just eight remaining members of the family Prophalangopsidae, a group with a fossil record of over 90 extinct species widespread during the Jurassic period. We reveal that the sound produced by this organ has the characteristics of a broadband ultrasonic anti-predator defence, with a peak frequency of 58±15.5 kHz and a bandwidth of 50 kHz (at 10 dB below peak). Evidence from sexual dimorphism, knowledge on hearing capabilities and assessment of local predators, suggests that the signal likely targets ground-dwelling predators. Additionally, we reveal a previously undescribed series of cavities underneath the organ that probably function as a mechanism for ultrasound amplification. Morphological structures homologous in both appearance and anatomical location to the Ander's organ are observed to varying degrees in 4 of the 7 other extant members of this family, with the remaining 3 yet to be assessed. Therefore, we suggest that such structures may either be more widely present in this ancient family than previously assumed, or have evolved to serve a key function in the long-term survival of these few species, allowing them to outlive their extinct counterparts.
Biological and mechanical systems, whether by their overuse or their aging, will inevitably fail. Hearing provides a poignant example of this with noise-induced and age-related hearing loss. Hearing loss is not unique to humans, however, and is experienced by all animals in the face of wild and eclectic differences in ear morphology and operation. Here we exploited the high throughput and accessible tympanal ear of the desert locust, Schistocerca gregaria (mixed sex) to rigorously quantify changes in the auditory system due to noise exposure (3 kHz pure tone at 126 dB SPL) and age. We analysed tympanal dispalcements, morphology of the auditory Müller’s organ and measured activity of the auditory nerve, the transduction current and electrophysiological properties of individual auditory receptors. We found that noise mildly and transiently changes tympanal displacements, decreases both the width of the auditory nerve and the transduction current recorded from individual auditory neurons. Whereas age – but not noise - decreases the number of auditory neurons and increases their resting potential. Multiple other properties of Müller’s organ were unaffected by either age or noise including: the number of supporting cells in Müller’s organ or the nerve, membrane resistance and capacitance of the auditory neurons. The sound-evoked activity of the auditory nerve decreased as a function of age and this decrease was exacerbated by noise, with the largest difference during the middle of their life span. This ‘middle-aged deafness’ pattern of hearing loss mirrors that found for humans exposed to noise early in their life.Key point summaryAge and noise lead to hearing loss.Tympanal displacements have a transient and delayed reduction after noise.The number of auditory neurons decreases with age. The width of the auditory nerve is reduced with noise exposure.Locusts repeatedly exposed to noise lost their hearing compared to silent controls, but their hearing became similar to old silent control locusts due to age-related hearing loss dominating.The electrophysiological properties of the auditory neurons and the transduction current remained unchanged for aged locusts but repeated noise exposure led to a cumulative decrease in the transduction current.
1. Entomology is key to understanding terrestrial and freshwater ecosystems at a time of unprecedented anthropogenic environmental change and offers substantial untapped potential to benefit humanity in a variety of ways, from improving agricultural practices to managing vector-borne diseases and inspiring technological advances.2. We identified high priority challenges for entomology using an inclusive, open, and democratic four-stage prioritisation approach, conducted among the membership and affiliates (hereafter 'members') of the UK-based Royal Entomological Society (RES).3. A list of 710 challenges was gathered from 189 RES members. Thematic analysis was used to group suggestions, followed by an online vote to determine initial † Deceased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.