Proteoglycan 4 (PRG4/lubricin) is secreted by cells that reside in articular cartilage and line the synovial joint. Lubricin may play a role in modulating inflammatory responses through interaction with CD44. This led us to examine if lubricin could be playing a larger role in the modulation of inflammation/immunity through interaction with Toll-like receptors (TLRs). Human Embryonic Kidney (HEK) cells overexpressing TLRs 2, 4 or 5 and surface plasmon resonance were employed to determine if full length recombinant human lubricin was able to bind to and activate TLRs. Primary human synovial fibroblasts were also examined using flow cytometry and Luminex multiplex ELISA. A rat destabilization model of osteoarthritis (OA) was used to determine if lubricin injections were able to regulate pain and/or inflammation in vivo. Lubricin can bind to and regulate the activity of TLRs, leading to downstream changes in inflammatory signalling independent of HA. We confirmed these findings in vivo through intra-articular injections of lubricin in a rat OA model where the inhibition of systemic inflammatory signaling and reduction in pain were observed. Lubricin plays an important role in regulating the inflammatory environment under both homeostatic and tissue injury states.
This protocol outlines steps for optimizing the transfection of adherent primary mammalian cells using the readily available off-the-shelf cationic polymer, 25-kDa branched polyethylenimine (bPEI25). Transfection efficiency of cationic polymers varies among cell lines and is highly dependent on the conditions and environment in which complexes are formed. Factors requiring optimization include the salt concentration, volume, incubation time, mixing order and ratio of polymer to DNA. In this transfection protocol, complexes are prepared in 30 min, with analysis 24 h later; thus, experiments can be completed in 2 d. In this protocol, as an example, we describe the parameters we have optimized for the transfection of bone marrow stromal cells and normal human foreskin fibroblasts. By using this protocol, we have obtained transfection efficiencies comparable to lipofection. An appropriately optimized protocol enhances the utility of cationic polymers in transfecting mammalian cells, thereby providing an effective alternative to expensive commercial reagents.
This study was conducted in order to develop amphiphilic, low molecular weight polymeric carriers for nonviral gene delivery. Caprylic, myristic, palmitic, stearic, oleic and linoleic acids were grafted onto the 2 kDa polyethylenimine (PEI) and properties critical for gene delivery were investigated using 293T and bone marrow stromal cells. The extent of lipid substitution on the polymers was controlled by the lipid:PEI feed ratio during the synthesis. The toxicity of the native and lipid-substituted 2 kDa PEI was relatively lower than the 25 kDa PEI, although lipid substitution generally increased the toxicity of the polymers in vitro. Lipid substitution reduced the ability of the polymers to complex DNA, as well as the stability of final complexes, as measured by heparin-induced dissociation. Once fully complexed to a plasmid DNA, however, the lipid-substituted polymers increased the plasmid DNA delivery to the cells. In 293T cells, the lipid-substituted polymers displayed a transfection ability that was equivalent to highly effective 25 kDa PEI, but without the toxic effect associated with the latter polymer. Among the lipids explored, no particular lipid emerged as the ideal substituent for transgene expression, although linoleic acid appeared to be superior to other lipid substituents. No correlation was evident between the level of substitution and DNA delivery efficiency of the polymers, and as little as 1 lipid substitution per PEI was effective in transforming the ineffective 2 kDa PEI into an effective carrier. The current structure-function studies are providing important clues about the properties critical for gene delivery and providing carriers effective for nonviral plasmid delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.