Multidrug-resistant
Acinetobacter baumannii
isolates are associated with significant morbidity and mortality in hospitals worldwide. Understanding their pathogenicity is critical for improving therapeutic management.
The spread of antibiotic resistant Acinetobacter baumannii poses a significant threat to public health worldwide. This nosocomial bacterial pathogen can be associated with life-threatening infections, particularly in intensive care units. A. baumannii is mainly described as an extracellular pathogen with restricted survival within cells. This study shows that a subset of A. baumannii clinical isolates extensively multiply within non-phagocytic immortalized and primary cells, without the induction of apoptosis, and with bacterial clusters visible up to 48 hours after infection. This phenotype was observed for the A. baumannii C4 strain associated with high mortality in a hospital outbreak, and the A. baumannii ABC141 strain which wasn't isolated from an infection site but was found to be hyperinvasive. Intracellular multiplication of these A. baumannii strains occurred within spacious single membrane-bound vacuoles, labeled with the lysosomal associate membrane protein (LAMP1). However, these compartments excluded lysotracker, an indicator of acidic pH, suggesting that A. baumannii can divert its trafficking away from the lysosomal degradative pathway. These compartments were also devoid of autophagy features. A high-content microscopy screen of 43 additional A. baumannii clinical strains highlighted various phenotypes: (1) the majority of strains remained extracellular, (2) a significant proportion was capable of invasion and limited persistence, and (3) two strains efficiently multiplied within LAMP1-positive vacuoles, one of which was also hyperinvasive. These data identify an intracellular niche for specific A. baumannii clinical strains that enables extensive multiplication in an environment protected from host immune responses and out of reach from many antibiotics.
Virulence traits of
Acinetobacter baumannii
isolates of the worldwide most prevalent international clonal lineage, IC2, remain largely unknown. In our study, multidrug-resistant IC2 clinical isolates differed substantially in their virulence potential despite their close genetic relatedness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.