Quantitative positron emission tomography/computed tomography (PET/CT) can be used as diagnostic or prognostic tools (i.e. single measurement) or for therapy monitoring (i.e. longitudinal studies) in multicentre studies. Use of quantitative parameters, such as standardized uptake values (SUVs), metabolic active tumor volumes (MATVs) or total lesion glycolysis (TLG), in a multicenter setting requires that these parameters be comparable among patients and sites, regardless of the PET/CT system used. This review describes the motivations and the methodologies for quantitative PET/CT performance harmonization with emphasis on the EANM Research Ltd. (EARL) Fluorodeoxyglucose (FDG) PET/CT accreditation program, one of the international harmonization programs aiming at using FDG PET as a quantitative imaging biomarker. In addition, future accreditation initiatives will be discussed. The validation of the EARL accreditation program to harmonize SUVs and MATVs is described in a wide range of tumor types, with focus on therapy assessment using either the European Organization for Research and Treatment of Cancer (EORTC) criteria or PET Evaluation Response Criteria in Solid Tumors (PERCIST), as well as liver-based scales such as the Deauville score. Finally, also presented in this paper are the results from a survey across 51 EARL-accredited centers reporting how the program was implemented and its impact on daily routine and in clinical trials, harmonization of new metrics such as MATV and heterogeneity features.
PurposeWe prospectively evaluated whether a strategy using point spread function (PSF) reconstruction for both diagnostic and quantitative analysis in non-small cell lung cancer (NSCLC) patients meets the European Association of Nuclear Medicine (EANM) guidelines for harmonization of quantitative values.MethodsThe NEMA NU-2 phantom was used to determine the optimal filter to apply to PSF-reconstructed images in order to obtain recovery coefficients (RCs) fulfilling the EANM guidelines for tumour positron emission tomography (PET) imaging (PSFEANM). PET data of 52 consecutive NSCLC patients were reconstructed with unfiltered PSF reconstruction (PSFallpass), PSFEANM and with a conventional ordered subset expectation maximization (OSEM) algorithm known to meet EANM guidelines. To mimic a situation in which a patient would undergo pre- and post-therapy PET scans on different generation PET systems, standardized uptake values (SUVs) for OSEM reconstruction were compared to SUVs for PSFEANM and PSFallpass reconstruction.ResultsOverall, in 195 lesions, Bland-Altman analysis demonstrated that the mean ratio between PSFEANM and OSEM data was 1.03 [95 % confidence interval (CI) 0.94–1.12] and 1.02 (95 % CI 0.90–1.14) for SUVmax and SUVmean, respectively. No difference was noticed when analysing lesions based on their size and location or on patient body habitus and image noise. Ten patients (84 lesions) underwent two PET scans for response monitoring. Using the European Organization for Research and Treatment of Cancer (EORTC) criteria, there was an almost perfect agreement between OSEMPET1/OSEMPET2 (current standard) and OSEMPET1/PSFEANM-PET2 or PSFEANM-PET1/OSEMPET2 with kappa values of 0.95 (95 % CI 0.91–1.00) and 0.99 (95 % CI 0.96–1.00), respectively. The use of PSFallpass either for pre- or post-treatment (i.e. OSEMPET1/PSFallpass-PET2 or PSFallpass-PET1/OSEMPET2) showed considerably less agreement with kappa values of 0.75 (95 % CI 0.67–0.83) and 0.86 (95 % CI 0.78–0.94), respectively.ConclusionProtocol-optimized images and compliance with EANM guidelines allowed for a reliable pre- and post-therapy evaluation when using different generation PET systems. These data obtained in NSCLC patients could be extrapolated to other solid tumours.Electronic supplementary materialThe online version of this article (doi:10.1007/s00259-013-2391-1) contains supplementary material, which is available to authorized users.
By improving activity recovery, especially for nonenlarged nodes, PSF significantly improves the sensitivity, NPV, and negative LR of FDG-PET for nodal staging in non-small cell lung cancer. These data suggest that preoperative invasive nodal staging may be omitted in the case of a negative PSF FDG-PET/CT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.