Productivity of microalgal cultivation processes is tightly related to photosynthetic efficiency, and therefore to light availability at the cell scale. In an agitated, highly turbid suspension,the light signal received by a single phytoplankton cell moving in a dense culture is a succession of flashes. The growth characteristics of microalgae under such dynamic light conditions are thus fundamental information to understand nonlinear properties of the photosynthetic process and to improve cultivation process design and operation. Studies of the long term consequences of dynamic illumination regime on photosynthesis require a very specific experimental set-up where fast varying signals are applied on the long term. In order to investigate the growth response of the unicellular photosynthetic eukaryote Dunaliella salina (Chlorophyceae) to intermittent light exposure, different light regimes using LEDs with the same average total light dose were applied in continuous cultures. Flashing light with different durations of light flashes (△t of 30 s, 15 s, 2 s and 0.1 s) followed by dark periods of variable length (0.67 ≤ L:D ≤ 2) yielding flash frequencies in the range 0.017-5 Hz, were compared to continuous illumination. Specific growth rate, photosynthetic pigments, lipid productivity and elemental composition were measured on two duplicates for each irradiance condition. The different treatments of intermittent light led to specific growth rates ranging from 0.25 to 0.93 day(-1) . While photosynthetic efficiency was enhanced with increased flash frequency, no significant differences were observed in the particular carbon and chlorophyll content. Pigment analysis showed that within this range of flash frequency, cells progressively photoacclimated to the average light intensity.
Hydrodynamics in a high-rate production reactor for microalgae cultivation affects the light history perceived by cells. The interplay between cell movement and medium turbidity leads to a complex light pattern, whose forcing effects on photosynthesis and photoacclimation dynamics are non-trivial. Hydrodynamics of high density algal ponds mixed by a paddle wheel has been studied recently, although the focus has never been on describing its impact on photosynthetic growth efficiency. In this multidisciplinary downscaling study, we first reconstructed single cell trajectories in an open raceway using an original hydrodynamical model offering a powerful discretization of the Navier–Stokes equations tailored to systems with free surfaces. The trajectory of a particular cell was selected and the associated high-frequency light pattern was computed. This light pattern was then experimentally reproduced in an Arduino-driven computer controlled cultivation system with a low density Dunaliella salina culture. The effect on growth and pigment content was recorded for various frequencies of the light pattern, by setting different paddle wheel velocities. Results show that the frequency of this realistic signal plays a decisive role in the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared to that recorded under the on/off signals usually used in the literature. Indeed, the light received by a single cell contains signals from low to high frequencies that nonlinearly interact with the photosynthesis process and differentially stimulate the various time scales associated with photoacclimation and energy dissipation. This study highlights the need for experiments with more realistic light stimuli to better understand microalgal growth at high cell densities. An experimental protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.