The ability to obtain single cell transcriptomes for stable cell types and dynamic cell states is ushering in a new era for biology. We created the Tabula Drosophilae, a single cell atlas of the adult fruit fly which includes 580k cells from 15 individually dissected sexed tissues as well as the entire head and body. Over 100 researchers from the fly community contributed annotations to >250 distinct cell types across all tissues. We provide an in-depth analysis of cell type-related gene signatures and transcription factor markers, as well as sexual dimorphism, across the whole animal. Analysis of common cell types that are shared between tissues, such as blood and muscle cells, allowed the discovery of rare cell types and tissue-specific subtypes. This atlas provides a valuable resource for the entire Drosophila community and serves as a comprehensive reference to study genetic perturbations and disease models at single-cell resolution.
While past studies have suggested that plasticity exists between dermal fibroblasts and adipocytes, it remains unknown whether fat actively contributes to fibrosis in scarring. We show that adipocytes convert to scar-forming fibroblasts in response to Piezo-mediated mechanosensing to drive wound fibrosis. We establish that mechanics alone are sufficient to drive adipocyte-to-fibroblast conversion. By leveraging clonal-lineage-tracing in combination with scRNA-seq, Visium, and CODEX, we define a mechanically naive fibroblast-subpopulation that represents a transcriptionally intermediate state between adipocytes and scar-fibroblasts. Finally, we show that Piezo1 or Piezo2-inhibition yields regenerative healing by preventing adipocytes activation to fibroblasts, in both mouse-wounds and a novel human-xenograft-wound model. Importantly, Piezo1-inhibition induced wound regeneration even in pre-existing established scars, a finding that suggests a role for adipocyte-to-fibroblast transition in wound remodeling, the least-understood phase of wound healing. Adipocyte-to-fibroblast transition may thus represent a therapeutic target for minimizing fibrosis via Piezo-inhibition in organs where fat contributes to fibrosis.
There is undisputable benefit in translating basic science research concretely into clinical practice, and yet, the vast majority of therapies and treatments fail to achieve approval. The rift between basic research and approved treatment continues to grow, and in cases where a drug is granted approval, the average time from initiation of human trials to regulatory marketing authorization spans almost a decade. Albeit with these hurdles, recent research with deferoxamine (DFO) bodes significant promise as a potential treatment for chronic, radiation-induced soft tissue injury. DFO was originally approved by the Food and Drug Administration (FDA) in 1968 for the treatment of iron overload. However, investigators more recently have posited that its angiogenic and antioxidant properties could be beneficial in treating the hypovascular and reactive-oxygen species-rich tissues seen in chronic wounds and radiation-induced fibrosis (RIF). Small animal experiments of various chronic wound and RIF models confirmed that treatment with DFO improved blood flow and collagen ultrastructure. With a well-established safety profile, and now a strong foundation of basic scientific research that supports its potential use in chronic wounds and RIF, we believe that the next steps required for DFO to achieve FDA marketing approval will include large animal studies and, if those prove successful, human clinical trials. Though these milestones remain, the extensive research thus far leaves hope for DFO to bridge the gap between bench and wound clinic in the near future.
Wound healing results in the formation of scar tissue which can be associated with functional impairment, psychological stress, and significant socioeconomic cost which exceeds 20 billion dollars annually in the United States alone. Pathologic scarring is often associated with exaggerated action of fibroblasts and subsequent excessive accumulation of extracellular matrix proteins which results in fibrotic thickening of the dermis. In skin wounds, fibroblasts transition to myofibroblasts which contract the wound and contribute to remodeling of the extracellular matrix. Mechanical stress on wounds has long been clinically observed to result in increased pathologic scar formation, and studies over the past decade have begun to uncover the cellular mechanisms that underly this phenomenon. In this article, we will review the investigations which have identified proteins involved in mechano-sensing, such as focal adhesion kinase, as well as other important pathway components that relay the transcriptional effects of mechanical forces, such as RhoA/ROCK, the hippo pathway, YAP/TAZ, and Piezo1. Additionally, we will discuss findings in animal models which show the inhibition of these pathways to promote wound healing, reduce contracture, mitigate scar formation, and restore normal extracellular matrix architecture. Recent advances in single cell RNA sequencing and spatial transcriptomics and the resulting ability to further characterize mechanoresponsive fibroblast subpopulations and the genes that define them will be summarized. Given the importance of mechanical signaling in scar formation, several clinical treatments focused on reducing tension on the wound have been developed and are described here. Finally, we will look toward future research which may reveal novel cellular pathways and deepen our understanding of the pathogenesis of pathologic scarring. The past decade of scientific inquiry has drawn many lines connecting these cellular mechanisms that may lead to a map for the development of transitional treatments for patients on the path to scarless healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.