Easily processed materials with the ability to transport excitons over length scales of more than 100 nanometers are highly desirable for a range of light-harvesting and optoelectronic devices. We describe the preparation of organic semiconducting nanofibers comprising a crystalline poly(di-n-hexylfluorene) core and a solvated, segmented corona consisting of polyethylene glycol in the center and polythiophene at the ends. These nanofibers exhibit exciton transfer from the core to the lower-energy polythiophene coronas in the end blocks, which occurs in the direction of the interchain p-p stacking with very long diffusion lengths (>200 nanometers) and a large diffusion coefficient (0.5 square centimeters per second). This is made possible by the uniform exciton energetic landscape created by the well-ordered, crystalline nanofiber core.
Recent advances in the self-assembly of block copolymers have enabled the precise fabrication of hierarchical nanostructures using low-cost solution-phase protocols. However, the preparation of well-defined and complex planar nanostructures in which the size is controlled in two dimensions (2D) has remained a challenge. Using a series of platelet-forming block copolymers, we have demonstrated through quantitative experiments that the living crystallization-driven self-assembly (CDSA) approach can be extended to growth in 2D. We used 2D CDSA to prepare uniform lenticular platelet micelles of controlled size and to construct precisely concentric lenticular micelles composed of spatially distinct functional regions, as well as complex structures analogous to nanoscale single- and double-headed arrows and spears. These methods represent a route to hierarchical nanostructures that can be tailored in 2D, with potential applications as diverse as liquid crystals, diagnostic technology and composite reinforcement.
The preparation of well-defined nanoparticles based on soft matter, using solution-processing techniques on a commercially viable scale, is a major challenge of widespread importance. Self-assembly of block copolymers in solvents that selectively solvate one of the segments provides a promising route to core-corona nanoparticles (micelles) with a wide range of potential uses. Nevertheless, significant limitations to this approach also exist. For example, the solution processing of block copolymers generally follows a separate synthesis step and is normally performed at high dilution. Moreover, non-spherical micelles-which are promising for many applications-are generally difficult to access, samples are polydisperse and precise dimensional control is not possible. Here we demonstrate the formation of platelet and cylindrical micelles at concentrations up to 25% solids via a one-pot approach-starting from monomers-that combines polymerization-induced and crystallization-driven self-assembly. We also show that performing the procedure in the presence of small seed micelles allows the scalable formation of low dispersity samples of cylindrical micelles of controlled length up to three micrometres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.