Purpose People who stutter (PWS) have more unstable speech motor systems than people who are typically fluent (PWTF). Here, we used real-time magnetic resonance imaging (MRI) of the vocal tract to assess variability and duration of movements of different articulators in PWS and PWTF during fluent speech production. Method The vocal tracts of 28 adults with moderate to severe stuttering and 20 PWTF were scanned using MRI while repeating simple and complex pseudowords. Midsagittal images of the vocal tract from lips to larynx were reconstructed at 33.3 frames per second. For each participant, we measured the variability and duration of movements across multiple repetitions of the pseudowords in three selected articulators: the lips, tongue body, and velum. Results PWS showed significantly greater speech movement variability than PWTF during fluent repetitions of pseudowords. The group difference was most evident for measurements of lip aperture using these stimuli, as reported previously, but here, we report that movements of the tongue body and velum were also affected during the same utterances. Variability was not affected by phonological complexity. Speech movement variability was unrelated to stuttering severity within the PWS group. PWS also showed longer speech movement durations relative to PWTF for fluent repetitions of multisyllabic pseudowords, and this group difference was even more evident as complexity increased. Conclusions Using real-time MRI of the vocal tract, we found that PWS produced more variable movements than PWTF even during fluent productions of simple pseudowords. PWS also took longer to produce multisyllabic words relative to PWTF, particularly when words were more complex. This indicates general, trait-level differences in the control of the articulators between PWS and PWTF. Supplemental Material https://doi.org/10.23641/asha.14782092
Theoretical accounts of developmental stuttering implicate dysfunctional cortico-striatal-thalamo-cortical motor loops through the putamen. However, the analysis of conventional MRI brain scans in individuals who stutter has failed to yield strong support for this theory in terms of reliable differences in the structure or function of the basal ganglia. Here, we performed quantitative mapping of brain tissue, which can be used to measure iron content alongside markers sensitive to myelin and thereby offers particular sensitivity to the measurement of iron-rich structures such as the basal ganglia. Analysis of these quantitative maps in 41 men and women who stutter and 32 individuals who are typically fluent revealed significant group differences in maps of R 2 *, indicative of higher iron content in individuals who stutter in the left putamen and in left hemisphere cortical regions important for speech motor control. Higher iron levels in brain tissue in individuals who stutter could reflect elevated dopamine levels or lysosomal dysfunction, both of which are implicated in stuttering. This study represents the first use of these quantitative measures in developmental stuttering and provides new evidence of microstructural differences in the basal ganglia and connected frontal cortical regions.
Transcranial direct current stimulation (tDCS) modulates cortical excitability in a polarity-specific way and, when used in combination with a behavioural task, it can alter performance. TDCS has the potential, therefore, for use as an adjunct to therapies designed to treat disorders affecting speech, including, but not limited to acquired aphasias and developmental stuttering. For this reason, it is important to conduct studies evaluating its effectiveness and the parameters optimal for stimulation. Here, we aimed to evaluate the effects of bi-hemispheric tDCS over speech motor cortex on performance of a complex speech motor learning task, namely the repetition of tongue twisters. A previous study in older participants showed that tDCS could modulate performance on a similar task. To further understand the effects of tDCS, we also measured the excitability of the speech motor cortex before and after stimulation. Three groups of 20 healthy young controls received: (i) anodal tDCS to the left IFG/LipM1 and cathodal tDCS to the right hemisphere homologue; or (ii) cathodal tDCS over the left and anodal over the right; or (iii) sham stimulation. Participants heard and repeated novel tongue twisters and matched simple sentences before, during and 10 min after the stimulation. One mA tDCS was delivered concurrent with task performance for 13 min. Motor excitability was measured using transcranial magnetic stimulation to elicit motor-evoked potentials in the lip before and immediately after tDCS. The study was double-blind, randomized, and sham-controlled; the design and analysis were pre-registered. Performance on the task improved from baseline to after stimulation but was not significantly modulated by tDCS. Similarly, a small decrease in motor excitability was seen in all three stimulation groups but did not differ among them and was unrelated to task performance. Bayesian analyses provide substantial evidence in support of the null hypotheses in both cases, namely that tongue twister performance and motor excitability were not affected by tDCS. We discuss our findings in the context of the previous positive results for a similar task. We conclude that tDCS may be most effective when brain function is sub-optimal due to age-related declines or pathology. Further study is required to determine why tDCS failed to modulate excitability in the speech motor cortex in the expected ways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.