Multiple myeloma (MM) is a genetically heterogeneous disease, which to date remains fatal. Finding a common mechanism for initiation and progression of MM continues to be challenging. By means of integrative genomics, we identified an underexpressed gene signature in MM patient cells compared to normal counterpart plasma cells. This profile was enriched for previously defined H3K27-tri-methylated genes, targets of the Polycomb group (PcG) proteins in human embryonic fibroblasts. Additionally, the silenced gene signature was more pronounced in ISS stage III MM compared to stage I and II. Using chromatin immunoprecipitation (ChIP) assay on purified CD138+ cells from four MM patients and on two MM cell lines, we found enrichment of H3K27me3 at genes selected from the profile. As the data implied that the Polycomb-targeted gene profile would be highly relevant for pharmacological treatment of MM, we used two compounds to chemically revert the H3K27-tri-methylation mediated gene silencing. The S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin (DZNep) and the histone deacetylase inhibitor LBH589 (Panobinostat), reactivated the expression of genes repressed by H3K27me3, depleted cells from the PRC2 component EZH2 and induced apoptosis in human MM cell lines. In the immunocompetent 5T33MM in vivo model for MM, treatment with LBH589 resulted in gene upregulation, reduced tumor load and increased overall survival. Taken together, our results reveal a common gene signature in MM, mediated by gene silencing via the Polycomb repressor complex. The importance of the underexpressed gene profile in MM tumor initiation and progression should be subjected to further studies.
Multiple myeloma (MM) is a B-cell malignancy characterized by the expansion of clonal plasma blasts/plasma cells within the bone marrow that relies on multiple signaling cascades, including tyrosine kinase activated pathways, to proliferate and evade cell death. Despite emerging new treatment strategies, multiple myeloma remains at present incurable. Thus, novel approaches targeting several signaling cascades by using the multityrosine kinase inhibitor (TKI), sorafenib, seem a promising treatment approach for multiple myeloma. Here, we show that sorafenib induces cell death in multiple myeloma cell lines and in CD138 þ -enriched primary multiple myeloma patient samples in a caspase-dependent and -independent manner. Furthermore, sorafenib has a strong antitumoral and -angiogenic activity in the 5T33MM mouse model leading to increased overall survival. Multiple myeloma cells undergo autophagy in response to sorafenib, and inhibition of this cytoprotective pathway potentiated the efficacy of this TKI. Mcl-1, a survival factor in multiple myeloma, is downregulated at the protein level by sorafenib allowing for the execution of cell death, as ectopic overexpression of this protein protects multiple myeloma cells. Concomitant targeting of Mcl-1 by sorafenib and of Bcl-2/Bcl-xL by the antagonist ABT737 improves the efficacy of sorafenib in multiple myeloma cell lines and CD138 þ -enriched primary cells in the presence of bone marrow stromal cells. Altogether, our data support the use of sorafenib as a novel therapeutic modality against human multiple myeloma, and its efficacy may be potentiated in combination with ABT737. Cancer Res; 72(20); 5348-62. Ó2012 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.