A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D-and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC 50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
A rapid screening by (1)H and (1)H-(13)C HSQC NMR spectroscopy of EtOAc extracts of Endiandra and Beilschmiedia species allowed the selection of Beilschmiedia ferruginea leaves and flowers extract for a chemical investigation, leading to the isolation of 11 new tetracyclic endiandric acid analogues, named ferrugineic acids A-K (1-11). Their structures were determined by 1D and 2D NMR spectroscopic analysis in combination with HRMS data. These compounds were assayed for Bcl-xL and Mcl-1 binding affinities. Ferrugineic acids B, C, and J (2, 3, and 10) exhibited significant binding affinity for both antiapoptotic proteins Bcl-xL (Ki = 19.2, 12.6, and 19.4 μM, respectively) and Mcl-1 (Ki = 14.0, 13.0, and 5.2 μM, respectively), and ferrugineic acid D (4) showed only significant inhibiting activity for Mcl-1 (Ki = 5.9 μM).
Proteins of the Bcl-2 family are key targets in anticancer drug discovery. Disrupting the interaction between anti- and pro-apoptotic members of this protein family was the approach chosen in this study to restore apoptosis. Thus, a biological screening on the modulation of the Bcl-xL/Bak and Mcl-1/Bid interactions permitted the selection of Knema hookeriana for further phytochemical investigations. The ethyl acetate extract from the stem bark led to the isolation of six new compounds, three acetophenone derivatives (1-3) and three anacardic acid derivatives (4-6), along with four known anacardic acids (7-10) and two cardanols (11, 12). Their structures were elucidated by 1D and 2D NMR analysis in combination with HRMS experiments. The ability of these compounds to antagonize Bcl-xL/Bak and Mcl-1/Bid association was determined, using a protein-protein interaction assay, but only anacardic acid derivatives (4-10) exhibited significant binding properties, with Ki values ranging from 0.2 to 18 μM. Protein-ligand NMR experiments further revealed that anacardic acid 9, the most active compound, does not interact with the anti-apoptotic proteins Bcl-xL and Mcl-1 but instead interacts with pro-apoptotic protein Bid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.