Lochnericine is a major monoterpene indole alkaloid (MIA) in the roots of Madagascar periwinkle (). Lochnericine is derived from the stereoselective C6,C7-epoxidation of tabersonine and can be metabolized further to generate other complex MIAs. While the enzymes responsible for its downstream modifications have been characterized, those involved in lochnericine biosynthesis remain unknown. By combining gene correlation studies, functional assays, and transient gene inactivation, we identified two highly conserved P450s that efficiently catalyze the epoxidation of tabersonine: tabersonine 6,7-epoxidase isoforms 1 and 2 (TEX1 and TEX2). Both proteins are quite divergent from the previously characterized tabersonine 2,3-epoxidase and are more closely related to tabersonine 16-hydroxylase, involved in vindoline biosynthesis in leaves. Biochemical characterization of TEX1/2 revealed their strict substrate specificity for tabersonine and their inability to epoxidize 19-hydroxytabersonine, indicating that they catalyze the first step in the pathway leading to hörhammericine production. and displayed complementary expression profiles, with expressed mainly in roots and in aerial organs. Our results suggest that and originated from a gene duplication event and later acquired divergent, organ-specific regulatory elements for lochnericine biosynthesis throughout the plant, as supported by the presence of lochnericine in flowers. Finally, through the sequential expression of and up to four other MIA biosynthetic genes in yeast, we reconstituted the 19-acetylhörhammericine biosynthetic pathway and produced tailor-made MIAs by mixing enzymatic modules that are naturally spatially separated in the plant. These results lay the groundwork for the metabolic engineering of tabersonine/lochnericine derivatives of pharmaceutical interest.
Scedosporium apiospermum is a soil fungus which can cause severe and often fatal cerebral infections in both immunocompetent patients in the event of near drowning and immunosuppressed patients such as lung transplant recipients. Because of the low susceptibility of this fungus to antifungal drugs, and the low permeability of the blood-brain barrier (BBB), therapeutic drug monitoring is necessary to reach an effective tissue concentration with limited side effects. Indeed, diffusion of the drug in the brain is dependent on several parameters, such as the integrity of the BBB and the activity of efflux pumps. To evaluate drug diffusion, two experimental models were developed in immunocompetent and immunosuppressed rats. Inocula were administered via the penile vein and a clinical scale (0-9) was established, based on weight and clinical and neurologic signs evaluated by the tail suspension test. Cerebral involvement was confirmed by magnetic resonance imaging and histologic examination of brain sections after hematoxylin-eosin-safran or silver staining. Voriconazole or posaconazole was given to the rats at doses ranging from 10 to 75 mg/kg/day via i.v. or oral routes, respectively. Whatever the immune status, the effective doses (defined by a doubling of the survival time and the absence of neurologic sequelae) were 30 mg/kg/day for voriconazole and 50 mg/kg/day for posaconazole. Overall, the results demonstrated that these models may constitute valuable tools for the performance of pharmacokinetic and pharmacodynamic studies for pharmacokinetic-pharmacodynamic modeling.
Scedosporium species rank the second, after Aspergillus fumigatus, among the filamentous fungi colonizing the airways of patients with cystic fibrosis (CF). Development of microorganisms in the respiratory tract depends on their capacity to evade killing by the host immune system, particularly through the oxidative response of macrophages and neutrophils, with the release of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This is particularly true in the airways of CF patients which display an exacerbated inflammatory reaction. To protect themselves, pathogens have developed various enzymatic antioxidant systems implicated in ROS degradation, including superoxide dismutases, catalases, cytochrome C peroxidases, chloroperoxidases and enzymes of the glutathione and thioredoxin systems, or in RNS degradation, that is, flavohemoglobins, nitrate reductases, and nitrite reductases. Here we investigated the transcriptional regulation of the enzymatic antioxidant gene battery in 24-h-old hyphae of Scedosporium apiospermum in response to oxidative stress induced chemically or by exposure to activated phagocytic cells. We showed that 21 out of the 33 genes potentially implicated in the oxidative or nitrosative stress response were overexpressed upon exposure of the fungus to various chemical oxidants, while they were only 13 in co-cultures with macrophages or neutrophils. Among them, genes encoding two thioredoxin reductases and to a lesser extent, a peroxiredoxin and one catalase were found to be overexpressed after chemical oxidative stress as well as in co-cultures. These results suggest that thioredoxin reductases, which are known to be virulence factors in other pathogenic fungi, play a key role in pathogenesis of scedosporiosis, and may be new drug targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.