Intact forests contribute to the ecosystem functionality of landscapes by storing and sequestering carbon, buffering and cooling the microclimate, and providing a range of related ecosystem functions. Forest fragmentation not only poses a threat to many organisms but also reduces the resistance and resilience of the ecosystem, which is especially relevant to the ongoing climate crisis. The effects of recent extreme heat years on forests in Germany have not been studied in detail for the influence of fragmentation. We investigate the relation of forest fragmentation with temperature and vitality in Germany per ecoregion at the canopy level using satellite imagery at 1-km and 30-m resolution. We compiled and correlated forest maps for connectivity based on Thiessen polygons, canopy temperatures on the hottest days based on land surface temperature, and forest vitality based on the maximum normalized difference vegetation index per growing season. We differentiated between ecoregions and main forest types. In 2022, larger intact tree-covered areas that are less fragmented have relatively low temperatures on hot days and higher overall vitality. Nearly 98% of the almost 1.95 million forest fragments at 30-m resolution in Germany are smaller than 1 km2, which cover nearly 30% of the total forest area. To counteract the forest crisis, forest and landscape management should aim to reduce fragmentation and maintain tree biomass and forest cover in the landscape. Increasing the size of continuous forest fragments contributes to ecosystem-based adaptation to climate change.
Effective protected areas reflect socio-ecological values, such as biodiversity and habitat maintenance, as well as human well-being. These values, which safeguard ecosystem services in protected areas, are treated as models for the sustainable preservation and use of resources. While there is much research on the effectiveness of protected areas in a variety of disciplines, the question is whether there is a common framework that uses remote sensing methods.We conducted a qualitative and a quantitative analysis of 44 peer-reviewed scientific papers utilizing remote sensing data in order to examine the effectiveness of protected areas. Very few studies to date have a wide or even a global geographical focus; instead, most quantify the effectiveness of protected areas by focusing on local-scale case studies and single indicators such as forest cover change. Methods that help integrate spatial selection approaches, to compare a protected area's characteristics with its surroundings, are increasingly being used. Based on this review, we argue for a multi-indicator-based framework on protected area effectiveness, including the development of a consistent set of socio-ecological indicators for a global analysis. In turn, this will allow for globally applicable use, including a concrete evaluation that considers the diversity of regional parameters, biome-specific variables, and political frameworks. Ideally, such a framework will enhance the monitoring and evaluation of global strategies and conventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.