Mitochondrial reactive oxygen species (mtROS) are cellular messengers essential for cellular homeostasis. In response to stress, reverse electron transport (RET) through respiratory complex I generates high levels of mtROS. Suppression of ROS production via RET (ROS-RET) reduces survival under stress, while activation of ROS-RET extends lifespan in basal conditions. Here, we demonstrate that ROS-RET signalling requires increased electron entry and uninterrupted electron flow through the electron transport chain (ETC). We find that in old fruit flies, ROS-RET is abolished when electron flux is decreased and that their mitochondria produce consistently high levels of mtROS. Finally, we demonstrate that in young flies, limiting electron exit, but not entry, from the ETC phenocopies mtROS generation observed in old individuals. Our results elucidate the mechanism by which ROS signalling is lost during ageing.
Background: Discovering biomarkers for dementia is a pivotal step toward successful early diagnosis and treatment. Although plasma biomarkers have been explored, no consensus has been reached. Alpha-synuclein (AS), a 14 kDa synaptic protein associated with several neurodegenerative diseases, exists natively within erythrocytes (ERC). This protein is characteristic of Lewy body diseases, in which it aggregates into toxic Lewy bodies. As ERC are implicated in dementia, they are a potential target for future biomarkers. Objective: The aims of this study were to assess AS levels within ERC and whether AS can be used as a peripheral biomarker to differentiate between dementia and aged matched healthy control subjects. Methods: A total of 114 samples (60 aging controls, 36 Alzheimer's disease, 12 vascular dementia (VaD) and 6 dementia with Lewy bodies (DLB) subjects) were analyzed. We used Bradford assay to measure protein concentration, indirect ELISA to detect levels of AS, and immunoblotting to identify AS composition. Data were analyzed with nonparametric tests. Results: AS oligomers were present in dementia blood samples, whereas in controls, AS was largely monomeric. There was a significant increase in AS levels in DLB whole blood (p = 0.005; Kruskal-Wallis test), with a sensitivity and specificity of 100.0% and 93.9%. Protein concentrations in ERC isolated at pH 5.7 were significantly increased in dementia patients compared to controls (17.58 versus 40.33 g/ml; p ≤ 0.005; Mann-Whitney test). In the VaD group, the protein concentration in the pH5.7 ERC fraction had sensitivity and specificity of 91.7% and 62.1%. Conclusions: ERC protein concentration and AS levels have a potential for development of a novel diagnostic dementia blood test.
Because of the importance of pH homeostasis in bone and the current uncertainty about the mechanisms by which intracellular pH (pHi) is regulated in this tissue, we have investigated the roles of cytosolic free Ca2+ concentrations ([Ca2+]i) and protein kinase C on the activation of Na+/H+ exchange in human osteoblast-like SaOS-2 cells. [Ca2+]i and pHi were measured using Fura-2 and 2'7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) respectively. The basal pHi in HCO3(-)-free buffer was 7.36 +/- 0.04 units (mean +/- S.D.). Addition of ionomycin in Ca(2+)-containing buffer did not cause a rise in basal pHi; however, addition of the phorbol ester phorbol 12-myristate 13-acetate (PMA) did cause a slowly developing rise in resting pHi of 0.14 +/- 0.02 unit over 4-5 min. Nigericin, a K+/H+ ionophore, caused an abrupt fall in pHi to 6.70 +/- 0.07 units. In nigericin-pretreated cells, PMA caused a rapid rise in pHi without changing the [Ca2+]i. In acidified cells, ionomycin increased [Ca2+]i and pHi in a parallel concentration-dependent (30-500 nM) manner. This action of ionomycin occurred in both the presence and the nominal absence of extracellular Ca2+. Ionomycin-induced alkalinization depended on extracellular Na+ and was inhibited in cells incubated with hexamethylene amiloride. When the incremental increase in [Ca2+]i induced by ionomycin was blocked by preincubation with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA)/AM, the effect on pHi was inhibited. Staurosporine, a protein kinase C inhibitor, blocked the action of PMA on pHi, but it had no effect on the ionomycin-induced increase in pHi. The action of ionomycin was not due to osmotic shock. We conclude that SaOS-2 cells have a protein kinase C-activatable Na+/H+ antiporter that is also stimulated, in acidified cells, in a concentration-dependent fashion by transients in [Ca2+]i which act via a non-protein kinase C pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.