To the best of our knowledge, our findings indicate for the first time that the objective approach for the development of search strategies is noninferior to the conceptual approach.
Our findings indicate that the objective approach applied by IQWiG for search strategy development yields higher sensitivity than and similar precision to a conceptual approach. The main advantage of the objective approach is that it produces consistent results across searches.
BackgroundMeta-analysis is used to combine the results of several related studies. Two different models are generally applied: the fixed-effect (FE) and random-effects (RE) models. Although the two approaches estimate different parameters (that is, the true effect versus the expected value of the distribution of true effects) in practice, the graphical presentation of results is the same for both models. This means that in forest plots of RE meta-analyses, no estimate of the between-study variation is usually given graphically, even though it provides important information about the heterogeneity between the study effect sizes.FindingsIn addition to the point estimate of the between-study variation, a prediction interval (PI) can be used to determine the degree of heterogeneity, as it provides a region in which about 95% of the true study effects are expected to be found. To distinguish between the confidence interval (CI) for the average effect and the PI, it may also be helpful to include the latter interval in forest plots. We propose a new graphical presentation of the PI; in our method, the summary statistics in forest plots of RE meta-analyses include an additional row, ‘95% prediction interval’, and the PI itself is presented in the form of a rectangle below the usual diamond illustrating the estimated average effect and its CI. We then compare this new graphical presentation of PIs with previous proposals by other authors. The way the PI is presented in forest plots is crucial. In previous proposals, the distinction between the CI and the PI has not been made clear, as both intervals have been illustrated either by a diamond or by extra lines added to the diamond, which may result in misinterpretation.ConclusionsTo distinguish graphically between the results of an FE and those of an RE meta-analysis, it is helpful to extend forest plots of the latter approach by including the PI. Clear presentation of the PI is necessary to avoid confusion with the CI of the average effect estimate.
Our findings indicate that when searching for RCTs of drugs in MEDLINE and EMBASE, a search using the truncated generic drug name in all fields produces sufficient results.
Consider the task of estimating a regression function for describing the relationship between a response and a vector of p predictors. Often only a small subset of all given candidate predictors actually effects the response, while the rest might inhibit the analysis. Procedures for variable selection aim to identify the true predictors. A method for variable selection when the dimension p of the regressor space is much larger than the sample size n is SIS -Sure Independence Screening -recently proposed by Fan and Lv (2008). The number of predictors is to be reduced to a value less than the number of observations before conducting the regression analysis. As SIS is based on nonrobust estimators, outliers in the data might lead to the elimination of true predictors. Hence, Gather and Guddat (2008) propose a robustified version of SIS called RoSIS which is based on robust estimators. Here, we give a modification of RoSIS by using the MCD estimator in the new algorithm. The new procedure MCD-RoSIS leads to better results, especially under collinearity. In a simulation study we compare the performance of SIS, RoSIS and MCD-RoSIS w.r.t. their robustness against different types of data contamination as well as different degrees of collinearity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.