BackgroundAlthough uterine macrophages are thought to play an important regulatory role at the maternal-fetal interface, their global gene expression profile is not known.Methodology/Principal FindingsUsing micro-array comprising approximately 14,000 genes, the gene expression pattern of human first trimester decidual CD14+ monocytes/macrophages was characterized and compared with the expression profile of the corresponding cells in blood. Some of the key findings were confirmed by real time PCR or by secreted protein. A unique gene expression pattern intrinsic of first trimester decidual CD14+ cells was demonstrated. A large number of regulated genes were functionally related to immunomodulation and tissue remodelling, corroborating polarization patterns of differentiated macrophages mainly of the alternatively activated M2 phenotype. These include known M2 markers such as CCL-18, CD209, insulin-like growth factor (IGF)-1, mannose receptor c type (MRC)-1 and fibronectin-1. Further, the selective up-regulation of triggering receptor expressed on myeloid cells (TREM)-2, alpha-2-macroglobulin (A2M) and prostaglandin D2 synthase (PGDS) provides new insights into the regulatory function of decidual macrophages in pregnancy that may have implications in pregnancy complications.Conclusions/SignificanceThe molecular characterization of decidual macrophages presents a unique transcriptional profile replete with important components for fetal immunoprotection and provides several clues for further studies of these cells.
Multiple myeloma (MM) is an aggressive cancer that originates from antibody-secreting plasma cells. Although genetically and transcriptionally well characterized, the aberrant gene regulatory networks that underpin this disease remain poorly understood. Here, we mapped regulatory elements, open chromatin, and transcription factor (TF) footprints in primary MM cells. In comparison with normal antibody-secreting cells, MM cells displayed consistent changes in enhancer activity that are connected to superenhancer (SE)-mediated deregulation of TF genes. MM cells also displayed widespread decompaction of heterochromatin that was associated with activation of regulatory elements and in a major subset of patients' deregulation of the cyclic adenosine monophosphate pathway. Finally, building SE-associated TF-based regulatory networks allowed identification of several novel TFs that are central to MM biology. Taken together, these findings significantly add to our understanding of the aberrant gene regulatory network that underpins MM.
DNA methylation contributes to the maintenance of genomic integrity in somatic cells, in part through the silencing of transposable elements. In this study, we use CRISPR-Cas9 technology to delete DNMT1 , the DNA methyltransferase key for DNA methylation maintenance, in human neural progenitor cells (hNPCs). We observe that inactivation of DNMT1 in hNPCs results in viable, proliferating cells despite a global loss of DNA CpG-methylation. DNA demethylation leads to specific transcriptional activation and chromatin remodeling of evolutionarily young, hominoid-specific LINE-1 elements (L1s), while older L1s and other classes of transposable elements remain silent. The activated L1s act as alternative promoters for many protein-coding genes involved in neuronal functions, revealing a hominoid-specific L1-based transcriptional network controlled by DNA methylation that influences neuronal protein-coding genes. Our results provide mechanistic insight into the role of DNA methylation in silencing transposable elements in somatic human cells, as well as further implicating L1s in human brain development and disease.
Tissues in multicellular organisms are populated by resident macrophages, which perform both generic and tissue‐specific functions. The latter are induced by signals from the microenvironment and rely on unique tissue‐specific molecular programs requiring the combinatorial action of tissue‐specific and broadly expressed transcriptional regulators. Here, we identify the transcription factors Bhlhe40 and Bhlhe41 as novel regulators of alveolar macrophages (AMs)—a population that provides the first line of immune defense and executes homeostatic functions in lung alveoli. In the absence of these factors, AMs exhibited decreased proliferation that resulted in a severe disadvantage of knockout AMs in a competitive setting. Gene expression analyses revealed a broad cell‐intrinsic footprint of Bhlhe40/Bhlhe41 deficiency manifested by a downregulation of AM signature genes and induction of signature genes of other macrophage lineages. Genome‐wide characterization of Bhlhe40 DNA binding suggested that these transcription factors directly repress the expression of lineage‐inappropriate genes in AMs. Taken together, these results identify Bhlhe40 and Bhlhe41 as key regulators of AM self‐renewal and guardians of their identity.
Highlights d scRNA-seq reveals early divergence of PBs, GCBCs, and MBCs from the common precursor d Unlike PBs and GCBCs, eMBCs remain transcriptionally similar to the precursors d Cell cycle exit of eMBCs is driven by the decline in antigen availability d Provision of antigen excess drives generation of a new PB wave from eMBCs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.