Some of the most spectacular examples of botanical carnivory—in which predator plants catch and digest animals presumably to supplement the nutrient-poor soils in which they grow—occur within the Droseraceae family. For example, sundews of the genus Drosera have evolved leaf movements and enzyme secretion to facilitate prey digestion. The molecular underpinnings of this behavior remain largely unknown; however, evidence suggests that prey-induced electrical impulses are correlated with movement and production of the defense hormone jasmonic acid (JA), which may alter gene expression. In noncarnivorous plants, JA is linked to electrical activity via changes in cytoplasmic Ca 2+ . Here, we find that dynamic Ca 2+ changes also occur in sundew ( Drosera spatulata ) leaves responding to prey-associated mechanical and chemical stimuli. Furthermore, inhibition of these Ca 2+ changes reduced expression of JA target genes and leaf movements following chemical feeding. Our results are consistent with the presence of a conserved Ca 2+ -dependent JA signaling pathway in the sundew feeding response and provide further credence to the defensive origin of plant carnivory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.