We present the development of a cell clinic. This is a micromachined cavity, or microvial, that can be closed with a lid. The lid is activated by two polypyrrole/Au microactuators. Inside the microvials two Au electrodes have been placed in order to perform impedance studies on single or a small number of cells. We report on impedance measurements on Xenopus leavis melanophores. We could measure a change in the impedance upon cell spreading and identify intracellular events such as the aggregation of pigment granules. The electrical data is correlated to optical microscopy.
The development of new conjugated-polymer tools for the study of the biological realm, and for use in a clinical setting, is reviewed in this article. Conjugated-polymer actuators, based on the changes of volume of the active conjugated polymer during redox transformation, can be used in electrolytes employed in cell-culture media and in biological fluids such as blood, plasma, and urine. Actuators ranging in size from 10 μm to 100 μm suitable for building structures to manipulate single cells are produced with photolithographic techniques. Larger actuators may be used for the manipulation of blood vessels and biological tissue.
Melanophores are dark-brown pigment cells located in the skin of amphibia, fish and many invertebrates. The skin colour of these organisms is regulated by the translocation of pigment organelles, and the pigment distribution can be altered by external stimuli. The ability to change colour in response to stimuli makes these cells of interest for biosensing applications. It was investigated whether pigment aggregation in Xenopus laevis melanophores can be detected by impedance measurements performed in transparent microvials. The results show that cell attachment, cell spreading and pigment aggregation all resulted in impedance changes, seen particularly at the highest frequency tested (10 kHz). The mechanisms behind the impedance changes were investigated by the addition of latrunculin or melatonin, both of which cause pigment aggregation. The latrunculin-induced aggregation was associated with cell area decrease and filamentous actin (F-actin) breakdown, processes that can influence the impedance. Lack of F-actin breakdown and an increase in cell area during melatonin-induced aggregation suggest that some other intracellular process also contributes to the impedance decrease seen for melatonin. It was shown that impedance measurements reflect not only cell attachment and cell spreading, but also intracellular events.
-Microtools that will be useful for the positioning and investigation of biological microstructures must operate under biologically relevant environments, such as cell culture media or blood plasma. They must also be comparatively strong, and preferably allow a muscle like mode of movement. This is given by a novel family of actuators based on conjugated polymers (like polypyrrole, PPy). By miniaturising these structures using standard photolithographic techniques, we can reduce the size down to 10-micrometer dimensions and build mechanically active microdevices. These can be moved and positioned by applying a potential to dope or undope the PPy. These novel structures are now being developed as a unique microactuator technology, suitable for operation in applications coupled to cell biology and biomedicine.
Intracellular transport of organelles, vesicles and proteins is crucial in all eukaryotic cells, and is accomplished by motor proteins that move along cytoskeletal filaments. A widely used model of intracellular transport is Xenopus laevis melanophores. These cells help the frog to change color by redistributing melanin-containing organelles in the cytoplasm. The high contrast of the pigment organelles permits changes in distribution to be observed by ordinary light microscopy; other intracellular transport systems often require fluorescence labeling. Here we have developed white light Image Correlation Spectroscopy (ICS) to monitor aggregation and dispersion of pigment. Hitherto in ICS, images of fluorescent particles from Confocal Laser Scanning Microscopy (CLSM) have been used to calculate autocorrelation functions from which the density can be obtained. In the present study we show that ICS can be modified to enable analysis of light-microscopy images; it can be used to monitor pigment aggregation and dispersion, and distinguish between different stimuli. This new approach makes ICS applicable not only to fluorescent but also to black-and-white images from light or electron microscopy, and is thus very versatile in different studies of movement of particles on the membrane or in the cytoplasm of cells without potentially harmful fluorescence labeling and activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.