Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Renewable resources are used increasingly in the production of polymers. In particular, monomers such as carbon dioxide, terpenes, vegetable oils and carbohydrates can be used as feedstocks for the manufacture of a variety of sustainable materials and products, including elastomers, plastics, hydrogels, flexible electronics, resins, engineering polymers and composites. Efficient catalysis is required to produce monomers, to facilitate selective polymerizations and to enable recycling or upcycling of waste materials. There are opportunities to use such sustainable polymers in both high-value areas and in basic applications such as packaging. Life-cycle assessment can be used to quantify the environmental benefits of sustainable polymers.
In this paper, three of the leading options for large scale CO 2 capture are reviewed from a technical perspective. We consider solvent-based chemisorption techniques, carbonate looping technology and the so-called oxy-fuel process. For each technology option, we give an overview of the technology, listing advantages and disadvantages. Subsequently, a discussion of the level of technological maturity is presented, and we conclude by identifying current gaps in knowledge and suggest areas with significant scope for future work. We then investigate the suitability of using ionic liquids as novel, environmentally benign solvents with which to capture CO 2 . In addition, we consider alternatives to simply sequestering CO 2 -we present a discussion on the possibility of recycling captured CO 2 and exploiting it as a C 1 building block for the sustainable manufacture of polymers, fine chemicals and liquid fuels. Finally, we present a discussion of relevant systems engineering methodologies in carbon capture system design.
processes. Biological or land-based forms of CO 2 utilization can generate economic value in the form of, for example, wood products for buildings, increased plant yields from enhanced soil carbon uptake, and even the production of biofuel and bio-derived chemicals. We use this broader definition deliberately; by thinking functionally, rather than narrowly about specific processes, we hope to promote dialogue across scientific fields, compare costs and benefits across pathways, and consider common techno-economic characteristics across pathways that could potentially assist in the identification of routes towards the mitigation of climate change. In this Perspective, we consider a non-exhaustive selection of ten CO 2 utilization pathways and provide a transparent assessment of the potential scale and cost for each one. The ten pathways are as follows: (1) CO 2-based chemical products, including polymers; (2) CO 2-based fuels; (3) microalgae fuels and other microalgae products; (4) concrete building materials; (5) CO 2 enhanced oil recovery (CO 2-EOR); (6) bioenergy with carbon capture and storage (BECCS); (7) enhanced weathering; (8) forestry techniques, including afforestation/reforestation, forest management and wood products; (9) land management via soil carbon sequestration techniques; and (10) biochar. These ten CO 2 utilization pathways can also be characterized as 'cycling', 'closed' and 'open' utilization pathways (Fig. 1, Table 1, Supplementary Materials). For instance, many (but not all) conventional industrial utilization pathways-such as CO 2-based fuels and chemicals-tend to be 'cycling': they move carbon through industrial systems over timescales of days, weeks or months. Such pathways do not provide net CO 2 removal from the atmosphere, but they can reduce emissions via industrial CO 2 capture that displaces fossil fuel use. By contrast, 'closed' pathways involve utilization and nearpermanent CO 2 storage, such as in the lithosphere (via CO 2-EOR or BECCS), in the deep ocean (via terrestrial enhanced weathering) or in mineralized carbon in the built and natural environments. Finally, 'open' pathways tend to be based in biological systems,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.