CBD can potentiate the psychoactive and physiological effects of THC in rats, most likely by delaying the metabolism and elimination of THC through an action on the CYP450 enzymes that metabolise both drugs.
The mechanical network of the brain is a major contributor to neural health and has been recognized by in vivo magnetic resonance elastography (MRE) to be highly responsive to diseases. However, until now only brain softening was observed and no mechanism was known that reverses the common decrement of neural elasticity during aging or disease. We used MRE in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model for dopaminergic neurodegeneration as observed in Parkinson’s disease (PD) to study the mechanical response of the brain on adult hippocampal neurogenesis as a robust correlate of neuronal plasticity in healthy and injured brain. We observed a steep transient rise in elasticity within the hippocampal region of up to over 50% six days after MPTP treatment correlating with increased neuronal density in the dentate gyrus, which could not be detected in healthy controls. Our results provide the first indication that new neurons reactively generated following neurodegeneration substantially contribute to the mechanical scaffold of the brain. Diagnostic neuroimaging may thus target on regions of the brain displaying symptomatically elevated elasticity values for the detection of neuronal plasticity following neurodegeneration.
Purpose: To investigate in vivo viscoelastic parameters related to early histopathological changes in the hippocampus and the cortex in early, preclinical Alzheimer's disease (AD) stages. Materials and Methods: Magnetic resonance elastography (MRE) was applied to female APP23 mice, an established transgenic mouse model of AD, at three different stages early in disease progression. To investigate the potential therapeutic effects of physical, cognitive, and social stimulation on brain viscoelasticity and histopathological characteristics, MRE was also applied after exposing young APP23 mice to environmentally enriched cage conditions (ENR), for 1, 12, or 24 weeks, which corresponds to adolescent, young-adult, and adult age at the time of analysis. Results: Viscosity in the hippocampus of APP23 mice is lower than in controls (CTR) (P 5 0.005) and does not increase with age, as in CTR mice (adolescent vs. young-adult: P 5 1.000, vs. adult: P 5 0.493, young-adult vs. adult: P 5 1.000). Hippocampal cell numbers decrease with disease progression in APP23 mice (P < 0.001). Elasticity in the hippocampus is also reduced in APP23 mice (P 5 0.024) but increases (P 5 0.027) with disease progression. ENR in APP23 mice transiently increased hippocampal cell numbers (P 5 0.002) but not viscosity (P 5 0.838). Conclusion: MRE detects alterations in viscoelasticity in the hippocampus related to early histopathological changes in the APP23 mouse model of AD. Level of Evidence: 1 Technical Efficacy: Stage 2
Migration of dendritic cells (DCs) from skin to lymph nodes on activation is an essential step in the initiation of an adequate immune response. The dermal microenvironment including stromal cells and their soluble factors might be involved in the regulation of DC migration. To focus on the role of dermal fibroblasts, we studied whether interaction of DCs with fibroblasts promotes the migration of DCs. DCs were co-cultured with resting fibroblasts or with tumor necrosis factor (TNF)alpha/IL-1beta-activated fibroblasts to mimic an inflammatory microenvironment. Interaction of DCs with TNFalpha/IL-1beta-stimulated fibroblasts increased the secretion of matrix metalloproteinase-9 (MMP-9) from DCs within 6 hours compared with DCs alone or DCs stimulated with lipopolysaccharide or TNFalpha/IL-1beta. In contrast, unstimulated fibroblasts did not affect MMP-9 secretion. IL-6 released by TNFalpha/IL-1beta-stimulated fibroblasts was identified as a factor responsible for fibroblast-stimulated MMP-9 secretion from DCs. In accordance with the elevated MMP-9 release, on co-culture with TNFalpha/IL-1beta-stimulated fibroblasts, DCs migrated significantly more effectively through matrigel matrices than did TNFalpha/IL-1beta-stimulated DCs. This was inhibited by a selective blocking of MMP-9, indicating the importance of MMP-9 for this migratory capacity of DCs. In summary, fibroblasts in the local dermal microenvironment are capable of potentiating the migratory capacity of DCs, and thus have the potential to actively participate in the regulation of a cutaneous immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.