Most ecosystems are affected by anthropogenic or natural pulse disturbances, which alter the community composition and functioning for a limited period of time. Whether and how quickly communities recover from such pulses is central to our understanding of biodiversity dynamics and ecosystem organisation, but also to nature conservation and management. Here, we present a meta-analysis of 508 (semi-)natural field experiments globally distributed across marine, terrestrial and freshwater ecosystems. We found recovery to be significant yet incomplete. At the end of the experiments, disturbed treatments resembled controls again when considering abundance (94%), biomass (82%), and univariate diversity measures (88%). Most disturbed treatments did not further depart from control after the pulse, indicating that few studies showed novel trajectories induced by the pulse. Only multivariate community composition on average showed little recovery: disturbed species composition remained dissimilar to the control throughout most experiments. Still, when experiments revealed a higher compositional stability, they tended to also show higher functional stability. Recovery was more complete when systems had high resistance, whereas resilience and resistance were negatively correlated. The overall results were highly consistent across studies, but significant differences between ecosystems and organism groups appeared. Future research on disturbances should aim to understand these differences, but also fill obvious gaps in the empirical assessments for regions (especially the tropics), ecosystems and organisms. In summary, we provide general evidence that (semi-)natural communities can recover from pulse disturbances, but compositional aspects are more vulnerable to long-lasting effects of pulse disturbance than the emergent functions associated to them.
The dynamics of host-parasite interactions are highly temperature-dependent and may be modified by increasing frequency and intensity of climate-driven heat events. Here, we show that altered patterns of temperature variance lead to an almost order-of-magnitude shift in thermal performance of host and pathogen life-history traits over and above the effects of mean temperature and, moreover, that different temperature regimes affect these traits differently. We found that diurnal fluctuations of ±3°C lowered infection rates and reduced spore burden compared to constant temperatures in our focal host Daphnia magna exposed to the microsporidium parasite Ordospora colligata. In contrast, a 3-day heatwave (+6°C) did not affect infection rates, but increased spore burden (relative to constant temperatures with the same mean) at 16°C, while reducing burden at higher temperatures. We conclude that changing patterns of climate variation, superimposed on shifts in mean temperatures due to global warming, may have profound and unanticipated effects on disease dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.