Peri-operative SARS-CoV-2 infection increases postoperative mortality. The aim of this study was to determine the optimal duration of planned delay before surgery in patients who have had SARS-CoV-2 infection. This international, multicentre, prospective cohort study included patients undergoing elective or emergency surgery during October 2020. Surgical patients with pre-operative SARS-CoV-2 infection were compared with those without previous SARS-CoV-2 infection. The primary outcome measure was 30-day postoperative mortality. Logistic regression models were used to calculate adjusted 30-day mortality rates stratified by time from diagnosis of SARS-CoV-2 infection to surgery. Among 140,231 patients (116 countries), 3127 patients (2.2%) had a pre-operative SARS-CoV-2 diagnosis. Adjusted 30-day mortality in patients without SARS-CoV-2 infection was 1.5% (95%CI 1.4-1.5). In patients with a pre-operative SARS-CoV-2 diagnosis, mortality was increased in patients having surgery within 0-2 weeks, 3-4 weeks and 5-6 weeks of the diagnosis (odds ratio (95%CI) 4.1 (3.3-4.8), 3.9 (2.6-5.1) and 3.6 (2.0-5.2), respectively). Surgery performed ≥ 7 weeks after SARS-CoV-2 diagnosis was associated with a similar mortality risk to baseline (odds ratio (95%CI) 1.5 (0.9-2.1)). After a ≥ 7 week delay in undertaking surgery following SARS-CoV-2 infection, patients with ongoing symptoms had a higher mortality than patients whose symptoms had resolved or who had been asymptomatic (6.0% (95%CI 3.2-8.7) vs. 2.4% (95%CI 1.4-3.4) vs. 1.3% (95%CI 0.6-2.0), respectively). Where possible, surgery should be delayed for at least 7 weeks following SARS-CoV-2 infection. Patients with ongoing symptoms ≥ 7 weeks from diagnosis may benefit from further delay.
SARS-CoV-2 has been associated with an increased rate of venous thromboembolism in critically ill patients. Since surgical patients are already at higher risk of venous thromboembolism than general populations, this study aimed to determine if patients with peri-operative or prior SARS-CoV-2 were at further increased risk of venous thromboembolism. We conducted a planned sub-study and analysis from an international, multicentre, prospective cohort study of elective and emergency patients undergoing surgery during October 2020. Patients from all surgical specialties were included. The primary outcome measure was venous thromboembolism (pulmonary embolism or deep vein thrombosis) within 30 days of surgery. SARS-CoV-2 diagnosis was defined as peri-operative (7 days before to 30 days after surgery); recent (1-6 weeks before surgery); previous (≥7 weeks before surgery); or none. Information on prophylaxis regimens or pre-operative anti-coagulation for baseline comorbidities was not available. Postoperative venous thromboembolism rate was 0.5% (666/123,591) in patients without SARS-CoV-2; 2.2% (50/2317) in patients with peri-operative SARS-CoV-2; 1.6% (15/953) in patients with recent SARS-CoV-2; and 1.0% (11/1148) in patients with previous SARS-CoV-2. After adjustment for confounding factors, patients with peri-operative (adjusted odds ratio 1.5 (95%CI 1.1-2.0)) and recent SARS-CoV-2 (1.9 (95%CI 1.2-3.3)) remained at higher risk of venous thromboembolism, with a borderline finding in previous SARS-CoV-2 (1.7 (95%CI 0.9-3.0)). Overall, venous thromboembolism was independently associated with 30-day mortality ). In patients with SARS-CoV-2, mortality without venous thromboembolism was 7.4% (319/4342) and with venous thromboembolism was 40.8% (31/76). Patients undergoing surgery with peri-operative or recent SARS-CoV-2 appear to be at increased risk of postoperative venous thromboembolism compared with patients with no history of SARS-CoV-2 infection. Optimal venous thromboembolism prophylaxis and treatment are unknown in this cohort of patients, and these data should be interpreted accordingly.
Head and neck paragangliomas (HNPGLs) are tumors of parasympathetic origin that occur at variable locations and are often secondary to germline mutations in succinate dehydrogenase (SDH) subunit genes. Occasionally these tumors produce catecholamines. Here, we assessed whether different locations of HNPGLs relate to presence of SDHx mutations, catecholamine production and other presentations. In this multicenter study, we collected clinical and biochemical data from 244 patients with and 71 patients without HNPGLs. We clarified that jugulotympanic HNPGLs have distinct features. In particular, 88% of jugulotympanic HNPGLs arose in women, among whom only 24% occurred due to SDHx mutations compared to 55% in men. Jugulotympanic HNPGLs were also rarely bilateral, were of a smaller size, and were less often metastatic compared to carotid body and vagal HNPGLs. Furthermore, we showed that plasma concentrations of methoxytyramine (MTY) were higher (p<0.0001) in patients with than without HNPGL, whereas plasma normetanephrine did not differ. Only 3.7% of patients showed strong increases in plasma normetanephrine. Plasma MTY was positively related to tumor size, but did not relate to presence of SDHx mutations or tumor location. Our findings confirm that increases in plasma MTY represent the main catecholamine-related biochemical feature of patients with HNPGLs. We expect that more sensitive analytical methods will make biochemical testing of HNPGLs more practical in the future and enable more than the current 30% of patients to be identified with dopamine-producing HNPGLs. The sex-dependent differences in the development of HNPGLs may have relevance to the diagnosis, management, and outcomes of these tumors.
Purpose: To evaluate the initial ten years of results from the intravitreal dexamethasone implant (DEX) in patients treated for retinal vein occlusion (RVO), diabetic macular edema (DME) or uveitis. Methods: Retrospective chart review of patients receiving DEX since its FDA approval. Best-corrected visual acuity (BCVA), central macular thickness (CMT) on optical coherence tomography, intraocular pressure and cataract status were collected. Baseline data were collected from the initial DEX and post-treatment data at the visit at least four weeks after the last DEX. Results: In total, 315 eyes received 1216 DEX over 63.9±4.6 weeks. In the branch RVO (n=90), central RVO (n=59) and DME (n=62) cohorts, BCVA improved significantly (p<0.05). The uveitis (n=154) cohort did not have a significant change in BCVA, 0.62 ±0.04 to 0.61±0.04 logMAR (p=0.34). Younger patients, vitrectomized eyes, and eyes without a history of glaucoma were associated with significantly better BCVA outcomes in the uveitis cohort (p<0.05). Overall, CMT decreased significantly from 376.6±6.8 to 322.7±5.0 µm (p<0.05). Intraocular pressure increased significantly (p<0.001) and the percentage of patients requiring anti-glaucoma medications increased from 33.0% to 67.6%. Of phakic eyes, 58.8% (n=63) had cataract progression or underwent surgery with those who underwent surgery experiencing a significant improvement in BCVA (p<0.05). Conclusion: Repeated DEX over extended follow-up offers significant anatomic benefits to all cohorts. Visual benefits are only seen in RVO, DME and select uveitis demographics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.