Purpose Glutamine addiction in c-MYC–overexpressing breast cancer is targeted by the aminotransferase inhibitor, aminooxyacetate (AOA). However, the mechanism of ensuing cell death remains unresolved. Experimental Design A correlation between glutamine dependence for growth and c-MYC expression was studied in breast cancer cell lines. The cytotoxic effects of AOA, its correlation with high c-MYC expression, and effects on enzymes in the glutaminolytic pathway were investigated. AOA-induced cell death was assessed by measuring changes in metabolite levels by magnetic resonance spectroscopy (MRS), the effects of amino acid depletion on nucleotide synthesis by cell-cycle and bromodeoxyuridine (BrdUrd) uptake analysis, and activation of the endoplasmic reticulum (ER) stress–mediated pathway. Antitumor effects of AOA with or without common chemotherapies were determined in breast cancer xenografts in immunodeficient mice and in a transgenic MMTV-rTtA-TetO-myc mouse mammary tumor model. Results We established a direct correlation between c-MYC overexpression, suppression of glutaminolysis, and AOA sensitivity in most breast cancer cells. MRS, cell-cycle analysis, and BrdUrd uptake measurements indicated depletion of aspartic acid and alanine leading to cell-cycle arrest at S-phase by AOA. Activation of components of the ER stress–mediated pathway, initiated through GRP78, led to apoptotic cell death. AOA inhibited growth of SUM159, SUM149, and MCF-7 xenografts and c-myc–overexpressing transgenic mouse mammary tumors. In MDA-MB-231, AOA was effective only in combination with chemotherapy. Conclusions AOA mediates its cytotoxic effects largely through the stress response pathway. The preclinical data of AOA’s effectiveness provide a strong rationale for further clinical development, particularly for c-MYC–overexpressing breast cancers.
The mammalian target of rapamycin (mTOR) is a crucial kinase present in all cells. Besides its role in the regulation of cell-growth, proliferation, angiogenesis, and survival of malignant tumors, mTOR additionally plays an important role in immune regulation by controlling the balance between effector T cells and regulatory T cells (Tregs). This critically affects the suppressive state of the immune system. Here, the systemic immunological effects of everolimus treatment were comprehensively investigated in five patients with metastatic renal cell cancer. In this hypothesis generating study, the immunological alterations in circulating immune subsets induced by everolimus included a (non-significant) increase in the frequency of Tregs, a significant increase in monocytic myeloid-derived suppressor cells, a significant decrease in the frequency of immunoregulatory natural killer cells, classical CD141+ (cDC1) and CD1c+ (cDC2) dendritic cell subsets, as well as a decrease in the activation status of plasmacytoid dendritic cells and cDC1. These date indicate that the immunological effects of everolimus affect multiple immune cell subsets and altogether tip the balance in favor of immunosuppression, which can be considered a detrimental effect in the treatment of cancer, and may require combination treatment with agents able to negate immune suppression and boost T cell immunity.
For the treatment of metastatic renal cell cancer several strategies are used among which the mTOR inhibitor everolimus. As mTOR plays an important role in the immune system, e.g., by controlling the expression of the transcription factor FoxP3 thereby regulating regulatory T cells (Tregs), it plays a key role in the balance between tolerance and inflammation. Previous reports showed stimulatory effects of mTOR inhibition on the expansion of Tregs, an effect that can be considered detrimental in terms of cancer control. Since metronomic cyclophosphamide (CTX) was shown to selectively deplete Tregs, a phase 1 clinical trial was conducted to comprehensively investigate the immune-modulating effects of several dosages and schedules of CTX in combination with the standard dose of everolimus, with the explicit aim to achieve selective Treg depletion. Our data show that 50 mg of CTX once daily and continuously administered, in combination with the standard dose of 10 mg everolimus once daily, not only results in depletion of Tregs, but also leads to a reduction in MDSC, a sustained level of the CD8+ T-cell population accompanied by an increased effector to suppressor ratio, and reversal of negative effects on three peripheral blood DC subsets. These positive effects on the immune response may contribute to improved survival, and therefore this combination therapy is further evaluated in a phase II clinical trial.Electronic supplementary materialThe online version of this article (10.1007/s00262-018-2288-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.