The purpose of the study was to examine the effect of 1) passive (assisted pedaling), 2) active (loadless pedaling), and 3) inactive (motionless) recovery modes on mean arterial pressure (MAP), skin blood flow (SkBF), and sweating during recovery after 15 min of dynamic exercise. It was hypothesized that an active recovery mode would be most effective in attenuating the fall in MAP, SkBF, and sweating during exercise recovery. Six male subjects performed 15 min of cycle ergometer exercise at 70% of their predetermined peak oxygen consumption followed by 15 min of 1) active, 2) passive, or 3) inactive recovery. Mean skin temperature (T(sk)), esophageal temperature (T(es)), SkBF, sweating, cardiac output (CO), stroke volume (SV), heart rate (HR), total peripheral resistance (TPR), and MAP were recorded at baseline, end exercise, and 2, 5, 8, 12, and 15 min postexercise. Cutaneous vascular conductance (CVC) was calculated as the ratio of laser-Doppler blood flow to MAP. In the active and passive recovery modes, CVC, sweat rate, MAP, CO, and SV remained elevated over inactive values (P < 0.05). The passive mode was equally as effective as the active mode in maintaining CO, SV, MAP, CVC, and sweat rate above inactive recovery. Sweat rate was different among all modes after 8 min of recovery (P < 0.05). TPR during active recovery remained significantly lower than during recovery in the passive and inactive modes (P < 0.05). No differences in either T(es) or T(sk) were observed among conditions. Given that MAP was higher during passive and active recovery modes than during inactive recovery suggests differences in CVC may be due to differences in baroreceptor unloading and not factors attributed to central command. However, differences in sweat rate may be influenced by factors such as central command and mechanoreceptor stimulation.
Spinal anesthesia-induced hypotension (SAIH) occurs frequently, particularly in the elderly and in patients undergoing caesarean section. SAIH is caused by arterial and venous vasodilatation resulting from the sympathetic block along with a paradoxical activation of cardioinhibitory receptors. Bradycardia after spinal anesthesia (SA) must always be treated as a warning sign of an important hemodynamic compromise. Fluid preloading (before initiation of the SA) with colloids such as hydroxyethyl starch (HES) effectively reduces the incidence and severity of arterial hypotension, whereas crystalloid preloading is not indicated. Co-loading with crystalloid or colloid is as equally effective to HES preloading, provided that the speed of administration is adequate (ie, bolus over 5 to 10 minutes). Ephedrine has traditionally been considered the vasoconstrictor of choice, especially for use during SAIH associated with bradycardia. Phenylephrine, a α 1 adrenergic receptor agonist, is increasingly used to treat SAIH and its prophylactic administration (ie, immediately after intrathecal injection of local anesthetics) has been shown to decrease the incidence of arterial hypotension. The role of norepinephrine as a possible alternative to phenylephrine seems promising. Other drugs, such as serotonin receptor antagonists (ondansetron), have been shown to limit the blood pressure drop after SA by inhibiting the Bezold-Jarisch reflex (BJR), but further studies are needed before their widespread use can be recommended.
Mood disorders consist of two etiologically related, but distinctly treated illnesses, major depressive disorder (MDD) and bipolar disorder (BPD). These disorders share similarities in their clinical presentation, and thus show high rates of misdiagnosis. Recent research has revealed significant transcriptional differences within the inflammatory cytokine pathway between MDD patients and controls, and between BPD patients and controls, suggesting this pathway may possess important biomarker properties. This exploratory study attempts to identify disorder-specific transcriptional biomarkers within the inflammatory cytokine pathway, which can distinguish between control subjects, MDD patients and BPD patients. This is achieved using RNA extracted from subject blood and applying synthesized complementary DNA to quantitative PCR arrays containing primers for 87 inflammation-related genes. Initially, we use ANOVA to test for transcriptional differences in a ‘discovery cohort’ (total n = 90) and then we use t-tests to assess the reliability of any identified transcriptional differences in a ‘validation cohort’ (total n = 35). The two most robust and reliable biomarkers identified across both the discovery and validation cohort were Chemokine (C-C motif) ligand 24 (CCL24) which was consistently transcribed higher amongst MDD patients relative to controls and BPD patients, and C-C chemokine receptor type 6 (CCR6) which was consistently more lowly transcribed amongst MDD patients relative to controls. Results detailed here provide preliminary evidence that transcriptional measures within inflammation-related genes might be useful in aiding clinical diagnostic decision-making processes. Future research should aim to replicate findings detailed in this exploratory study in a larger medication-free sample and examine whether identified biomarkers could be used prospectively to aid clinical diagnosis.
Cytokines are pleotropic cell signaling proteins that, in addition to their role as inflammatory mediators, also affect neurotransmitter systems, brain functionality and mood. Here we explore the potential utility of cytokine biomarkers for major depressive disorder. Specifically, we explore how genetic, transcriptomic and proteomic information relating to the cytokines might act as biomarkers, aiding clinical diagnosis and treatment selection processes. We advise future studies to investigate whether cytokine biomarkers might differentiate major depressive disorder patients from other patient groups with overlapping clinical characteristics. Furthermore, we invite future pharmacogenetic studies to investigate whether early antidepressant-induced changes to cytokine mRNA or protein levels precede behavioral changes and act as longer-term predictors of clinical antidepressant response.
Interscalene block (ISB) impairs ipsilateral lung function and generally is not used for patients with respiratory insufficiency. We present a 49-year-old man with chronic obstructive pulmonary disease scheduled for shoulder surgery. He was given a regional technique with an ISB (short-acting local anesthetic to minimize duration of diaphragmatic dysfunction) and suprascapular and axillary nerves blocks (long-acting local anesthetic). He was supported with noninvasive ventilation during the time of hemidiaphragmatic paralysis as documented by serial ultrasound examination. A discussion about ISB and its alternatives (general anesthesia versus brachial plexus block versus selective peripheral nerve blocks) always should occur for patients at risk for pulmonary complications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.