Learning accounts of addiction and obesity emphasize the persistent power of Pavlovian reward cues to trigger craving and increase relapse risk. While extinction can reduce conditioned responding, Pavlovian relapse phenomena—the return of conditioned responding following successful extinction—challenge the long-term success of extinction-based treatments. Translational laboratory models of Pavlovian relapse could therefore represent a valuable tool to investigate the mechanisms mediating relapse, although so far human research has mostly focused on return of fear phenomena. To this end we developed an appetitive conditioning paradigm with liquid food rewards in combination with a 3-day design to investigate the return of appetitive Pavlovian responses and the involved neural structures in healthy subjects. Pavlovian conditioning (day 1) was assessed in 62 participants, and a subsample ( n = 33) further completed extinction (day 2) and a reinstatement test (day 3). Conditioned responding was assessed on explicit (pleasantness ratings) and implicit measures (reaction time, skin conductance, heart rate, startle response) and reinstatement effects were further evaluated using fMRI. We observed a return of conditioned responding during the reinstatement test, evident by enhanced skin conductance responses, accompanied by enhanced BOLD responses in the amygdala. On an individual level, psychophysiological reinstatement intensity was significantly anticorrelated with ventromedial prefrontal cortex (vmPFC) activation, and marginally anticorrelated with enhanced amygdala-vmPFC connectivity during late reinstatement. Our results extend evidence from return of fear phenomena to the appetitive domain, and highlight the role of the vmPFC and its functional connection with the amygdala in regulating appetitive Pavlovian relapse.
Appetitive Pavlovian conditioning is a learning mechanism of fundamental biological and pathophysiological significance. Nonetheless, its exploration in humans remains sparse, which is partly attributed to the lack of an established psychophysiological parameter that aptly represents conditioned responding. This study evaluated pupil diameter and other ocular response measures (gaze dwelling time, blink duration and count) as indices of conditioning. Additionally, a learning model was used to infer participants’ learning progress on the basis of their pupil dilation. Twenty‐nine healthy volunteers completed an appetitive differential delay conditioning paradigm with a primary reward, while the ocular response measures along with other psychophysiological (heart rate, electrodermal activity, postauricular and eyeblink reflex) and behavioral (ratings, contingency awareness) parameters were obtained to examine the relation among different measures. A significantly stronger increase in pupil diameter, longer gaze duration and shorter eyeblink duration was observed in response to the reward‐predicting cue compared to the control cue. The Pearce‐Hall attention model best predicted the trial‐by‐trial pupil diameter. This conditioned response was corroborated by a pronounced heart rate deceleration to the reward‐predicting cue, while no conditioning effect was observed in the electrodermal activity or startle responses. There was no discernible correlation between the psychophysiological response measures. These results highlight the potential value of ocular response measures as sensitive indices for representing appetitive conditioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.