Cu2ZnSnS4 (CZTS) shows great potential for cheap, efficient photovoltaic devices. However, one problem during synthesis of CZTS films is the loss of Sn as a result of decomposition and evaporation of SnS. This paper uses kinetic models to show that the mechanism of the decomposition reaction probably occurs in at least two stages; first, a loss of sulfur which causes dissociation of the structure into binary sulfides, and only then the evaporation of SnS. Knowledge of the reaction mechanism helps to identify the driving force for decomposition as arising from the relative instability of Sn(IV) in CZTS against reduction; this theory is backed up by thermodynamic data. The volatility of SnS further exaggerates the decomposition by rendering it irreversible. This insight, alongside experimental data, allows prediction of the annealing conditions required to stabilize CZTS surfaces. A fundamental incompatibility of CZTS with high-temperature, vacuum-based processing is exposed, distinguishing it from related indium-containing compounds. This offers an explanation as to why the most efficient CZTS devices to-date all arise from “two-stage” fabrication processes involving low temperature deposition followed by annealing at high pressure, and provides key information for designing successful annealing strategies.
International audienceCu2ZnSnS4 (CZTS) is an interesting material for sustainable photovoltaics, but efficiencies are limited by the low open-circuit voltage. A possible cause of this is disorder among the Cu and Zn cations, a phenomenon which is difficult to detect by standard techniques. We show that this issue can be overcome using near-resonant Raman scattering, which lets us estimate a critical temperature of 533 +/- 10K for the transition between ordered and disordered CZTS. These findings have deep significance for the synthesis of high-quality material, and pave the way for quantitative investigation of the impact of disorder on the performance of CZTS-based solar cells. (C) 2014 AIP Publishing LLC
Thin film solar cells with the structure sodalimeglass∕Mo∕Cu(In,Ga)Se2∕Zn(O,S)∕ZnO∕ZnO:Al are studied for varying thickness and sulfur content of the Zn(O,S) buffer layer. These Zn(O,S) layers were deposited by atomic layer deposition (ALD) at 120°C. Devices with no or small concentrations of sulfur in the buffer layer show low open-circuit voltages. This is explained by the cliff, or negative conduction-band offset (CBO), of −0.2eV measured by photoelectron spectroscopy (PES) and optical methods for the Cu(In,Ga)Se2 (CIGS)∕ZnO interface. Devices with ZnS buffer layers exhibit very low photocurrent. This is expected from the large positive CBO (spike) of 1.2eV measured for the CIGS∕ZnS interface. For devices with Zn(O,S) buffer layers, two different deposition recipes were found to yield devices with efficiencies equal to or above reference devices in which standard CdS buffer layers were used; ultrathin Zn(O,S) layers with S∕Zn ratios of 0.8–0.9, and Zn(O,S) layers of around 30nm with average S∕Zn ratios of 0.3. The sulfur concentration increases towards the CIGS interface as revealed by transmission electron microscopy and in vacuo PES measurements. The occurrence of this sulfur gradient in ALD-Zn(O,S) is explained by longer incubation time for ZnO growth compared to ZnS growth. For the Zn(O,S) film with high sulfur content, the CBO is large which causes blocking of the photocurrent unless the film is ultrathin. For the Zn(O,S) film with lower sulfur content, a CBO of 0.2eV is obtained which is close to ideal, according to simulations. Efficiencies of up to 16.4% are obtained for devices with this buffer layer.
Experimental proof is presented for a hitherto undetected solid-state reaction between the solar cell material Cu(2)ZnSn(S,Se)(4) (CZTS(e)) and the standard metallic back contact, molybdenum. Annealing experiments combined with Raman and transmission electron microscopy studies show that this aggressive reaction causes formation of MoS(2) and secondary phases at the CZTS|Mo interface during thermal processing. A reaction scheme is presented and discussed in the context of current state-of-the-art synthesis methods for CZTS(e). It is concluded that alternative back contacts will be important for future improvements in CZTS(e) quality.
Cu 2 ZnSnS 4 (CZTS) is a promising material for thin film solar cells based on sustainable resources. This paper explores some consequences of the chemical instability between CZTS and the standard Mo "back contact" layer used in the solar cell. Chemical passivation of the back contact interface using titanium nitride (TiN) diffusion barriers, combined with variations in the CZTS annealing process, enables us to isolate the effects of back contact chemistry on the electrical properties of the CZTS layer that result from the synthesis, as determined by measurements on completed solar cells. It is found that instability in the back contact is responsible for large current losses in the finished solar cell, which can be distinguished from other losses that arise from instabilities in the surface of the CZTS layer during annealing. The TiN-passivated back contact is an effective barrier to sulfur atoms and therefore prevents reactions between CZTS and Mo. However, it also results in a high series resistance and thus a reduced fill factor in the solar cell. The need for high chalcogen pressure during CZTS annealing can be linked to suppression of the back contact reactions and could potentially be avoided if better inert back contacts were to be developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.