The modulation of theta frequency activity plays a major role in inhibitory control processes. However, the relevance of resting theta band activity and of the ability to spontaneously modulate this resting theta activity for neural mechanisms underlying inhibitory control is elusive. Various theoretical conceptions suggest to take these aspects into consideration. In the current study, we examine whether the strength of resting theta band activity or the ability to modulate the resting state theta activity affects response inhibition. We combined EEG‐time frequency decomposition and beamforming in a conflict‐modulated Go/Nogo task. A sample of N = 66 healthy subjects was investigated. We show that the strength of resting state theta activity modulates the effects of conflicts during motor inhibitory control. Especially when resting theta activity was low, conflicts strongly affected response inhibition performance and total theta band activity during Nogo trials. These effects were associated with theta‐related activity differences in the superior (BA7) and inferior parietal cortex (BA40). The results were very specific for total theta band activity since evoked theta activity and measures of intertrial phase coherency (phase‐locking factor) were not affected. The data suggest that the strength of resting state theta activity modulates processing of a theta‐related alarm or surprise signal during inhibitory control. The ability to voluntarily modulate theta band activity did not affect conflict‐modulated inhibitory control. These findings have important implications for approaches aiming to optimize human cognitive control.
Brain electrical activity in the theta frequency band is essential for cognitive control (e.g., during conflict monitoring), but is also evident in the resting state. The link between resting state theta activity and its relevance for theta-related neural mechanisms during cognitive control is still undetermined. Yet, theoretical considerations suggest that there may be a connection. To examine the link between resting state theta activity and conflict-related theta activity, we combined temporal EEG signal decomposition methods with time-frequency decomposition and beamforming methods in N = 86 healthy participants. Results indicate that resting state theta activity is closely associated with the strength of conflict-related neural activity at the level of ERPs and total theta power (consisting of phase-locked and nonphaselocked aspects of theta activity). The data reveal that resting state theta activity is related to a specific aspect of conflict-related theta activity, mainly in superior frontal regions and in the supplemental motor area (SMA, BA6) in particular. The signal decomposition showed that only stimulus-related, but not motor-response-related coding levels in the EEG signal and the event-related total theta activity were associated with resting theta activity. This specificity of effects may explain why the association between resting state theta activity and overt conflict monitoring performance may not be as strong as often assumed. The results suggest that resting state theta activity is particularly important to consider for input integration processes during cognitive control.
Resting-state neural activity plays an important role for cognitive control processes.Regarding response inhibition processes, an important facet of cognitive control, especially theta-band activity has been the focus of research. Theoretical considerations suggest that the interrelation of resting and task-related theta activity is subject to maturational effects. To investigate whether the relationship between resting theta activity and task-related theta activity during a response inhibition task changes even in young age, we tested N = 166 healthy participants between 8 and 30 years of age. We found significant correlations between resting and inhibitory controlrelated theta activity as well as behavioral inhibition performance. Importantly, these correlations were moderated by age. The moderation analysis revealed that higher resting theta activity was associated with stronger inhibition-related theta activity in individuals above the age of $10.7 years. The EEG beamforming analysis showed that this activity is associated with superior frontal region function (BA6). The correlation between resting and superior frontal response inhibition-related theta activity became stronger with increasing age. A similar pattern was found for response inhibition performance, albeit only evident from the age of $19.5 years. The results suggest that with increasing age, resting theta activity becomes increasingly important for processing the alarm/surprise signals in superior frontal brain regions during inhibitory control. Possible causes for these developmental changes are discussed.
The neurophysiological processes underlying the inhibition of impulsive responses have been studied extensively. While also the role of theta oscillations during response inhibition is well examined, the relevance of resting-state theta activity for inhibitory control processes is largely unknown. We test the hypothesis that there are specific relationships between resting-state theta activity and sensory/motor coding levels during response inhibition using EEG methods. We show that resting theta activity is specifically linked to the stimulus-related fraction of neurophysiological activity in specific time windows during motor inhibition. In contrast, concomitantly coded processes related to decision-making or response selection as well as the behavioral inhibition performance were not associated with resting theta activity. Even at the peak of task-related theta power, where task-related theta activity and resting theta activity differed the most, there was still predominantly a significant correlation between both types of theta activity. This suggests that aspects similar to resting dynamics are evident in the proportion of inhibition-related neurophysiological activity that reflects an “alarm” signal, whose function is to process and indicate the need for cognitive control. Thus, specific aspects of task-related theta power may build upon resting theta activity when cognitive control is necessary.
Neurofeedback (NF) is an important treatment for attention deficit/hyperactivity disorder (ADHD). In ADHD, cognitive control deficits pose considerable problems to patients. However, NF protocols are not yet optimized to enhance cognitive control alongside with clinical symptoms, partly because they are not driven by basic cognitive neuroscience. In this study, we evaluated different EEG theta and/or beta frequency band NF protocols designed to enhance cognitive control. Participants were n = 157 children and adolescents, n = 129 of them were patients with ADHD (n = 28 typically developing (TD) controls). Patients with ADHD were divided into five groups in the order of referral, with four of them taking part in different NF protocols systematically varying theta and beta power. The fifth ADHD group and the TD group did not undergo NF. All NF protocols resulted in reductions of ADHD symptoms. Importantly, only when beta frequencies were enhanced during NF (without any theta regulation or in combination with theta upregulation), consistent enhancing effects in both response inhibition and conflict control were achieved. The theta/beta NF protocol most widely used in clinical settings revealed comparatively limited effects. Enhancements in beta band activity are key when aiming to improve cognitive control functions in ADHD. This calls for a change in the use of theta/beta NF protocols and shows that protocols differing from the current clinical standard are effective in enhancing important facets of cognitive control in ADHD. Further studies need to examine regulation data within the neurofeedback sessions to provide more information about the mechanisms underlying the observed effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.