Background Patient decision aids should help people make evidence-informed decisions aligned with their values. There is limited guidance about how to achieve such alignment. Purpose To describe the range of values clarification methods available to patient decision aid developers, synthesize evidence regarding their relative merits, and foster collection of evidence by offering researchers a proposed set of outcomes to report when evaluating the effects of values clarification methods. Data Sources MEDLINE, EMBASE, PubMed, Web of Science, the Cochrane Library, and CINAHL. Study Selection We included articles that described randomized trials of 1 or more explicit values clarification methods. From 30,648 records screened, we identified 33 articles describing trials of 43 values clarification methods. Data Extraction Two independent reviewers extracted details about each values clarification method and its evaluation. Data Synthesis Compared to control conditions or to implicit values clarification methods, explicit values clarification methods decreased the frequency of values-incongruent choices (risk difference, –0.04; 95% confidence interval [CI], –0.06 to –0.02; P < 0.001) and decisional conflict (standardized mean difference, –0.20; 95% CI, –0.29 to –0.11; P < 0.001). Multicriteria decision analysis led to more values-congruent decisions than other values clarification methods (χ2 = 9.25, P = 0.01). There were no differences between different values clarification methods regarding decisional conflict (χ2 = 6.08, P = 0.05). Limitations Some meta-analyses had high heterogeneity. We grouped values clarification methods into broad categories. Conclusions Current evidence suggests patient decision aids should include an explicit values clarification method. Developers may wish to specifically consider multicriteria decision analysis. Future evaluations of values clarification methods should report their effects on decisional conflict, decisions made, values congruence, and decisional regret.
BackgroundPatient decision aids should help people make evidence-informed decisions aligned with their values. There is limited guidance about how to achieve such alignment.PurposeTo describe the range of values clarification methods available to patient decision aid developers, synthesize evidence regarding their relative merits, and foster collection of evidence by offering researchers a proposed set of outcomes to report when evaluating the effects of values clarification methods.Data SourcesMEDLINE, EMBASE, PubMed, Web of Science, the Cochrane Library, CINAHLStudy SelectionWe included articles that described randomized trials of one or more explicit values clarification methods. From 30,648 records screened, we identified 33 articles describing trials of 43 values clarification methods.Data ExtractionTwo independent reviewers extracted details about each values clarification method and its evaluation.Data SynthesisCompared to control conditions or to implicit values clarification methods, explicit values clarification methods decreased the frequency of values-disgruent choices (risk difference -0.04 95% CI [-0.06 to -0.02], p<.001) and decisional regret (standardized mean difference -0.20 95% CI [-0.29 to -0.11], p<0.001). Multicriteria decision analysis led to more values-congruent decisions than other values clarification methods (Chi-squared(2)=9.25, p=.01). There were no differences between different values clarification methods regarding decisional conflict (Chi-squared(2)=6.08, p=.05).LimitationsSome meta-analyses had high heterogeneity. We grouped values clarification methods into broad categories.ConclusionsCurrent evidence suggests patient decision aids should include an explicit values clarification method. Developers may wish to specifically consider multicriteria decision analysis. Future evaluations of values clarification methods should report their effects on decisional conflict, decisions made, values congruence, and decisional regret.
BackgroundDiabetes often places a large burden on people with diabetes (hereafter ‘patients’) and the society, that is, in part attributable to its complications. However, evidence from models predicting diabetes complications in patients remains unclear. With the collaboration of patient partners, we aimed to describe existing prediction models of physical and mental health complications of diabetes.MethodsBuilding on existing frameworks, we systematically searched for studies in Ovid-Medline and Embase. We included studies describing prognostic prediction models that used data from patients with pre-diabetes or any type of diabetes, published between 2000 and 2020. Independent reviewers screened articles, extracted data and narratively synthesised findings using established reporting standards.ResultsOverall, 78 studies reported 260 risk prediction models of cardiovascular complications (n=42 studies), mortality (n=16), kidney complications (n=14), eye complications (n=10), hypoglycaemia (n=8), nerve complications (n=3), cancer (n=2), fracture (n=2) and dementia (n=1). Prevalent complications deemed important by patients such as amputation and mental health were poorly or not at all represented. Studies primarily analysed data from older people with type 2 diabetes (n=54), with little focus on pre-diabetes (n=0), type 1 diabetes (n=8), younger (n=1) and racialised people (n=10). Per complication, predictors vary substantially between models. Studies with details of calibration and discrimination mostly exhibited good model performance.ConclusionThis rigorous knowledge synthesis provides evidence of gaps in the landscape of diabetes complication prediction models. Future studies should address unmet needs for analyses of complications n> and among patient groups currently under-represented in the literature and should consistently report relevant statistics.Scoping review registrationhttps://osf.io/fjubt/
Description of prognostic prediction models of diabetes-related complications published between 2000 and April 2020
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.