Background: Fungal extracellular vesicles (EVs) have been implicated in host-pathogen and pathogen-pathogen communication in some fungal diseases. In depth research into fungal EVs has been hindered by the lack of specific protein markers such as those found in mammalian EVs that have enabled sophisticated isolation and analysis techniques. Despite their role in fungal EV biogenesis, ESCRT proteins such as Vps23 (Tsg101) and Bro1 (ALIX) are not present as fungal EV cargo. Furthermore, tetraspanin homologs are yet to be identified in many fungi including the model yeast S. cerevisiae. Objective: We performed de novo identification of EV protein markers for the major human fungal pathogen Candida albicans with adherence to MISEV2018 guidelines. Materials and methods: EVs were isolated by differential ultracentrifugation from DAY286, ATCC90028 and ATCC10231 yeast cells, as well as DAY286 biofilms. Whole cell lysates (WCL) were also obtained from the EV-releasing cells. Label-free quantitative proteomics was performed to determine the set of proteins consistently enriched in EVs compared to WCL. Results: 47 proteins were consistently enriched in C. albicans EVs. We refined these to 22 putative C. albicans EV protein markers including the claudin-like Sur7 family (Pfam: PF06687) proteins Sur7 and Evp1 (orf19.6741). A complementary set of 62 EV depleted proteins was selected as potential negative markers. Conclusions: The marker proteins for C. albicans EVs identified in this study will be useful tools for studies on EV biogenesis and cargo loading in C. albicans and potentially other fungal species and will also assist in elucidating the role of EVs in C. albicans pathogenesis. Many of the proteins identified as putative markers are fungal specific proteins indicating that the pathways of EV biogenesis and cargo loading may be specific to fungi, and that assumptions made based on studies in mammalian cells could be misleading. Abbreviations: A1-ATCC10231; A9-ATCC90028; DAY B-DAY286 biofilm; DAY Y-DAY286 yeast; EVextracellular vesicle; Evp1extracellular vesicle protein 1 (orf19.6741); GOgene ontology; Log 2 (FC)log 2 (fold change); MCCmembrane compartment of Can1; MDSmultidimensional scaling; MISEVminimal information for studies of EVs; sEVssmall EVs; SPsignal peptide; TEMstetraspanin enriched microdomains; TMtransmembrane; VDMvesicle-depleted medium; WCLwhole cell lysate ARTICLE HISTORY
Extracellular vesicles (EVs) perform crucial functions in cell–cell communication. The packaging of biomolecules into membrane‐enveloped vesicles prior to release into the extracellular environment provides a mechanism for coordinated delivery of multiple signals at high concentrations that is not achievable by classical secretion alone. Most of the understanding of the biosynthesis, composition, and function of EVs comes from mammalian systems. Investigation of fungal EVs, particularly those released by pathogenic yeast species, has revealed diverse cargo including proteins, lipids, nucleic acids, carbohydrates, and small molecules. Fungal EVs are proposed to function in a variety of biological processes including virulence and cell wall homeostasis with a focus on host–pathogen interactions. EVs also carry signals between fungal cells allowing for a coordinated attack on a host during infection. Research on fungal EVs in still in its infancy. Here a review of the literature thus far with a focus on proteomic analysis is provided with respect to techniques, results, and prospects.
Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.