In recent years, there have been multiple advances in positron emission tomography/computed tomography (PET/CT) that improve cancer imaging. The present generation of PET/CT scanners introduces new hardware, software, and acquisition methods. This review describes these new developments, which include time-of-flight (TOF), point-spread-function (PSF), maximum-a-posteriori (MAP) based reconstruction, smaller voxels, respiratory gating, metal artefact reduction, and administration of quadratic weight-dependent 18F–fluorodeoxyglucose (FDG) activity. Also, hardware developments such as continuous bed motion (CBM), (digital) solid-state photodetectors and combined PET and magnetic resonance (MR) systems are explained. These novel techniques have a significant impact on cancer imaging, as they result in better image quality, improved small lesion detectability, and more accurate quantification of radiopharmaceutical uptake. This influences cancer diagnosis and staging, as well as therapy response monitoring and radiotherapy planning. Finally, the possible impact of these developments on the European Association of Nuclear Medicine (EANM) guidelines and EANM Research Ltd. (EARL) accreditation for FDG-PET/CT tumor imaging is discussed.
Accurate measurement of intratumor heterogeneity using parameters of texture on PET images is essential for precise characterization of cancer lesions. In this study, we investigated the influence of respiratory motion and varying noise levels on quantification of textural parameters in patients with lung cancer. Methods: We used an optimal-respiratory-gating algorithm on the list-mode data of 60 lung cancer patients who underwent 18 F-FDG PET. The images were reconstructed using a duty cycle of 35% (percentage of the total acquired PET data). In addition, nongated images of varying statistical quality (using 35% and 100% of the PET data) were reconstructed to investigate the effects of image noise. Several global image-derived indices and textural parameters (entropy, high-intensity emphasis, zone percentage, and dissimilarity) that have been associated with patient outcome were calculated. The clinical impact of optimal respiratory gating and image noise on assessment of intratumor heterogeneity was evaluated using Cox regression models, with overall survival as the outcome measure. The threshold for statistical significance was adjusted for multiple comparisons using Bonferroni correction. Results: In the lower lung lobes, respiratory motion significantly affected quantification of intratumor heterogeneity for all textural parameters (P , 0.007) except entropy (P . 0.007). The mean increase in entropy, dissimilarity, zone percentage, and high-intensity emphasis was 1.3% ± 1.5% (P 5 0.02), 11.6% ± 11.8% (P 5 0.006), 2.3% ± 2.2% (P 5 0.002), and 16.8% ± 17.2% (P 5 0.006), respectively. No significant differences were observed for lesions in the upper lung lobes (P . 0.007). Differences in the statistical quality of the PET images affected the textural parameters less than respiratory motion, with no significant difference observed. The median follow-up time was 35 mo (range, 7-39 mo). In multivariate analysis for overall survival, total lesion glycolysis and high-intensity emphasis were the two most relevant image-derived indices and were considered to be independent significant covariates for the model regardless of the image type considered. Conclusion: The tested textural parameters are robust in the presence of respiratory motion artifacts and varying levels of image noise.
Quantifying lesion volume and uptake in PET is important for patient management. Respiratory motion artefacts introduce inaccuracies in quantification of PET images. Amplitude-based optimal respiratory gating maintains image quality through selection of duty cycle. The effect of respiratory gating on lesion quantification depends on anatomical location.
In recent years, different metal artifact reduction methods have been developed for CT. These methods have only recently been introduced for PET/CT even though they could be beneficial for interpretation, segmentation, and quantification of the PET/CT images. In this study, phantom and patient scans were analyzed visually and quantitatively to measure the effect on PET images of iterative metal artifact reduction (iMAR) of CT data. The phantom consisted of 2 types of hip prostheses in a solution ofF-FDG and water. F-FDG PET/CT scans of 14 patients with metal implants (either dental implants, hip prostheses, shoulder prostheses, or pedicle screws) andGa-labeled prostate-specific membrane antigen (Ga-PSMA) PET/CT scans of 7 patients with hip prostheses were scored by 2 experienced nuclear medicine physicians to analyze clinical relevance. For all patients, a lesion was located in the field of view of the metal implant. Phantom and patients were scanned in a PET/CT scanner. The standard low-dose CT scans were processed with the iMAR algorithm. The PET data were reconstructed using attenuation correction provided by both standard CT and iMAR-processed CT. For the phantom scans, cold artifacts were visible on the PET image. There was a 30% deficit inF-FDG concentration, which was restored by iMAR processing, indicating that metal artifacts on CT images induce quantification errors in PET data. The iMAR algorithm was useful for most patients. When iMAR was used, the confidence in interpretation increased or stayed the same, with an average improvement of 28% ± 20% (scored on a scale of 0%-100% confidence). The SUV increase or decrease depended on the type of metal artifact. The mean difference in absolute values of SUV of the lesions was 3.5% ± 3.3%. The iMAR algorithm increases the confidence of the interpretation of the PET/CT scan and influences the SUV. The added value of iMAR depends on the indication for the PET/CT scan, location and size/type of the prosthesis, and location and extent of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.