A popular view in contemporary Boltzmannian statistical mechanics is to interpret the measures as typicality measures. In measuretheoretic dynamical systems theory measures can similarly be interpreted as typicality measures. However, a justification why these measures are a good choice of typicality measures is missing, and the paper attempts to fill this gap. The paper first argues that Pitowsky's (2012) justification of typicality measures does not fit the bill. Then a first proposal of how to justify typicality measures is presented. The main premises are that typicality measures are invariant and are related to the initial probability distribution of interest (which are translationcontinuous or translation-close). The conclusion are two theorems which show that the standard measures of statistical mechanics and dynamical systems are typicality measures. There may be other typicality measures, but they agree about judgements of typicality. Finally, it is proven that if systems are ergodic or epsilon-ergodic, there are uniqueness results about typicality measures.
This paper aims to shed light on the relation between Boltzmannian statistical mechanics and Gibbsian statistical mechanics by studying the Mechanical Averaging Principle, which says that, under certain conditions, Boltzmannian equilibrium values and Gibbsian phase averages are approximately equal. What are these conditions? We identify three conditions each of which is individually sufficient (but not necessary) for Boltzmannian equilibrium values to be approximately equal to Gibbsian phase averages: the Khinchin condition, and two conditions that result from two new theorems, the Average Equivalence Theorem and the Cancelling Out Theorem. These conditions are not trivially satisfied, and there are core models of statistical mechanics, the six-vertex model and the Ising model, in which they fail.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.