Modeling has become the most commonly used method in fisheries science, with numerous types of models and approaches available today. The large variety of models and the overwhelming amount of scientific literature published yearly can make it difficult to effectively access and use the output of fisheries modeling publications. In particular, the underlying topic of an article cannot always be detected using keyword searches. As a consequence, identifying the developments and trends within fisheries modeling research can be challenging and time-consuming. This paper utilizes a machine learning algorithm to uncover hidden topics and subtopics from peer-reviewed fisheries modeling publications and identifies temporal trends using 22,236 full-text articles extracted from 13 top-tier fisheries journals from 1990 to 2016. Two modeling topics were discovered: estimation models (a topic that contains the idea of catch, effort, and abundance estimation) and stock assessment models (a topic on the assessment of the current state of a fishery and future projections of fish stock responses and management effects). The underlying modeling subtopics show a change in the research focus of modeling publications over the last 26 years.
Fisheries are complex adaptive social-ecological systems (SES) that consist of interlinked human and ecosystems. They have mainly been studied by the natural sciences and focused on the ecosystem. However, rising concerns about sustainability and increasing complexity of societal challenges often require an understanding of fisheries in a SES context. For this purpose, the study of the human system should be expanded within fisheries science. Models are currently the most common method used in the field and these need to include the human dimension, alongside the ecosystem, when addressing fisheries systems as SES. The human dimension is an umbrella term for the complex web of human processes and it is captured by disciplines from the social sciences and the humanities. Consequently, capturing and synthesizing the variety of disciplines involved in the human dimension, and integrating them into fisheries models, requires an interdisciplinary approach. This study attempts to assess the presence of the human dimension in fisheries models applied to a European Union context and to evaluate interdisciplinarity within modeled human dimension aspects through a systematic review and qualitative analysis. Within 31 modeling publications, 20 different human dimension aspects could be identified within the categories of social phenomena, social processes, and individual attributes. Most of the human dimension aspects were modeled in an interdisciplinary manner in mathematical, statistical, simulation, or conceptual models. Yet, predominantly through the use of economic and environmental variables. We conclude that there is potential for the expansion of the human dimension and interdisciplinarity in fisheries models. To reach this potential, one should consider early involvement of all relevant disciplines in the formulation of theories, identification of data, and in the model development. We provide recommendations for interdisciplinary model development, communication, and documentation to increase our understanding of fisheries as SES.
Interdisciplinary research has faced many challenges, including institutional, cultural and practical ones, while it has also been reported as a ‘career risk’ and even ‘career suicide’ for researchers pursuing such an education and approach. Yet, the propagation of challenges and risks can easily lead to a feeling of anxiety and disempowerment in researchers, which we think is counterproductive to improving interdisciplinarity in practice. Therefore, in the search of ‘bright spots’, which are examples of cases in which people have had positive experiences with interdisciplinarity, this study assesses the perceptions of researchers on interdisciplinarity on the social media platform Twitter. The results of this study show researchers’ many positive experiences and successes of interdisciplinarity, and, as such, document examples of bright spots. These bright spots can give reason for optimistic thinking, which can potentially have many benefits for researchers’ well-being, creativity and innovation, and may also inspire and empower researchers to strive for and pursue interdisciplinarity in the future.
This is a scientific parable mostly based on an investigation of Compliance issues and their link to EBFM that arose as part of the MAREFRAME Atlantos CASE STUDY. Highlights are Cost of Compliance is proposed as a useful statistic for assessing any proposed change in management in any fishery. Methods of how it might be calculated draws on approaches developed for the MAREFRAME Atlantos Case Study. Highlights (for review) A Parable of Compliance issues and their link to EBFM outcomes.
Climate change is having a significant impact on the biology and ecology of fish stocks and aquaculture species and will affect the productivity within seafood supply chains in the future. The challenges are further amplified when actors within the fisheries and aquaculture sectors have very different ideas and assumptions about climate change and what risks and opportunities they entail. In order to address the challenges of climate change, several countries have developed national adaptation plans. However, fisheries and aquaculture are rarely included in these plans, resulting in a general lack of documented adaptation strategies within these sectors in most countries. This paper introduces guidelines for the development of climate adaptation plans (CAPs) within fisheries and aquaculture, applying a co-creation approach that requires the participation of scientists, industry representatives, policymakers, and other relevant stakeholders. The objective is to provide a stepwise approach to facilitate and enable stakeholders to plan strategies toward climate adaptation. The guidelines are based on practical experience and include a three-step process: (1) assessment of risks and opportunities; (2) identification of adaptation measures, and (3) operationalization of CAPs. The three-step process is also part of a larger cycle, including implementation, monitoring, and evaluation, again generating iterative feedback loops over time. Lessons learned are discussed, and we highlight the advantages and challenges of developing CAPs. While the guidelines are designed for and tested within fisheries and aquaculture systems, the CAP approach is also employable for other natural resource-based systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.