N‐glycosylation is an important post‐translational modification of proteins that has been highly conserved during evolution and is found in Eukaryota, Bacteria and Archaea. In eukaryotes, N‐glycan processing is sequential, involving multiple specific steps within the secretory pathway as proteins travel through the endoplasmic reticulum and the Golgi apparatus. In this review, we first summarize the different steps of the N‐glycan processing and further describe recent findings regarding the diversity of N‐glycan structures in eukaryotic clades. This comparison allows us to explore the different regulation mechanisms of N‐glycan processing among eukaryotic clades. Recent findings regarding the regulation of protein N‐glycosylation are highlighted, especially the regulation of the biosynthesis of complex‐type N‐glycans through manganese and calcium homeostasis and the specific role of transmembrane protein 165 (TMEM165) for which homologous sequences have been identified in several eukaryotic clades. Further research will be required to characterize the function of TMEM165 homologous sequences in different eukaryotic clades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.