Inhibitors of the Na+-glucose cotransporter SGLT2 enhance urinary glucose and urate excretion and lower plasma urate levels. The mechanisms remain unclear, but a role for enhanced glucose in the tubular fluid, which may interact with tubular urate transporters, such as the glucose transporter GLUT9 or the urate transporter URAT1, has been proposed. Studies were performed in nondiabetic mice treated with the SGLT2 inhibitor canagliflozin and in gene-targeted mice lacking the urate transporter Glut9 in the tubule or in mice with whole body knockout of Sglt2, Sglt1, or Urat1. Renal urate handling was assessed by analysis of urate in spontaneous plasma and urine samples and normalization to creatinine concentrations or by renal clearance studies with assessment of glomerular filtration rate by FITC-sinistrin. The experiments confirmed the contribution of URAT1 and GLUT9 to renal urate reabsorption, showing a greater contribution of the latter and additive effects. Genetic and pharmacological inhibition of SGLT2 enhanced fractional renal urate excretion (FE-urate), indicating that a direct effect of the SGLT2 inhibitor on urate transporters is not absolutely necessary. Consistent with a proposed role of increased luminal glucose delivery, the absence of Sglt1, which by itself had no effect on FE-urate, enhanced the glycosuric and uricosuric effects of the SGLT2 inhibitor. The SGLT2 inhibitor enhanced renal mRNA expression of Glut9 in wild-type mice, but tubular GLUT9 seemed dispensable for the increase in FE-urate in response to canagliflozin. First evidence is presented that URAT1 is required for the acute uricosuric effect of the SGLT2 inhibitor in mice.
Na+-glucose cotransporter (SGLT)1 mediates glucose reabsorption in late proximal tubules. SGLT1 also mediates macula densa (MD) sensing of an increase in luminal glucose, which increases nitric oxide (NO) synthase 1 (MD-NOS1)-mediated NO formation and potentially glomerular filtratrion rate (GFR). Here, the contribution of SGLT1 was tested by gene knockout (−/−) in type 1 diabetic Akita mice. A low-glucose diet was used to prevent intestinal malabsorption in Sglt1−/− mice and minimize the contribution of intestinal SGLT1. Hyperglycemia was modestly reduced in Sglt1−/− versus littermate wild-type Akita mice (480 vs. 550 mg/dl), associated with reduced diabetes-induced increases in GFR, kidney weight, glomerular size, and albuminuria. Blunted hyperfiltration was confirmed in streptozotocin-induced diabetic Sglt1−/− mice, associated with similar hyperglycemia versus wild-type mice (350 vs. 385 mg/dl). Absence of SGLT1 attenuated upregulation of MD-NOS1 protein expression in diabetic Akita mice and in response to SGLT2 inhibition in nondiabetic mice. During SGLT2 inhibition in Akita mice, Sglt1−/− mice had likewise reduced blood glucose (200 vs. 300 mg/dl), associated with lesser MD-NOS1 expression, GFR, kidney weight, glomerular size, and albuminuria. Absence of Sglt1 in Akita mice increased systolic blood pressure, associated with suppressed renal renin mRNA expression. This may reflect fluid retention due to blunted hyperfiltration. SGLT2 inhibition prevented the blood pressure increase in Sglt1−/− Akita mice, possibly due to additive glucosuric/diuretic effects. The data indicate that SGLT1 contributes to diabetic hyperfiltration and limits diabetic hypertension. Potential mechanisms include its role in glucose-driven upregulation of MD-NOS1 expression. This pathway may increase GFR to maintain volume balance when enhanced MD glucose delivery indicates upstream saturation of SGLTs and thus hyperreabsorption.
Purpose of reviewThis review is timely and relevant because many patients live many years with urinary diversions. Knowledge about the long term outcome with respect to function and complications are important for patient counseling and for the manner to follow-up patients. This study was performed to investigate the functioning of urinary diversions constructed > 25 years earlier. Recent findingsMost studies have a relatively shorter follow-up, mainly focussing on short term postoperative complications. Focussing on the long term, urinary tract infections (UTI) including pyelonephritis are common. Mild kidney function deterioration is described. SummaryRetrospective study (2018)(2019); 43 patients with regular follow-up at the Radboud University Medical Centre Nijmegen the Netherlands. Ileal conduit (n ¼ 19) and ureterosigmoidostomy (n ¼ 11) are the most common diversion types for reasons such as: bladder exstrophy (n ¼ 15), urinary incontinence (n ¼ 9) and malignancy (n ¼ 8). This series with a median follow-up of 40 years, shows it is possible to live and cope with a urinary diversion for a very long time. Ureterosigmoidostomies give relatively good results. Ileal conduits are functioning properly with acceptable complication rates. 95% suffers from chronic UTI's. Kidney function deterioration was mild. Diversions for benign reasons have more complex complications compared to diversion constructed for malignant reasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.