Organ dysfunction pertinent to tissue injury related to ischemic ex vivo preservation during transport from donor to recipient still represents a pivotal impediment in transplantation medicine. Cold storage under anoxic conditions minimizes metabolic activity, but eventually cannot prevent energetic depletion and impairment of cellular signal homeostasis. Reoxygenation of anoxically injured tissue may trigger additional damage to the graft, e.g., by abundant production of oxygen free radicals upon abrupt reactivation of a not yet equilibrated cellular metabolism. Paradoxically, this process is driven by the sudden restoration of normothermic conditions upon reperfusion and substantially less pronounced during re-oxygenation in the cold. The massive energy demand associated with normothermia is not met by the cellular systems that still suffer from hypothermic torpor and dys-equilibrated metabolites and eventually leads to mitochondrial damage, induction of apoptosis and inflammatory responses. This rewarming injury is partly alleviated by preceding supply of oxygen already in the cold but more effectively counteracted by an ensuing controlled and slow oxygenated warming up of the organ prior to implantation. A gentle restitution of metabolic turnover rates in line with the resumption of enzyme kinetics and molecular homeostasis improves post transplantation graft function and survival.
Cold preservation sensitizes organ grafts to exacerbation of tissue injury upon reperfusion. This reperfusion injury is not fully explained by the mere re‐introduction of oxygen but rather is pertinent to the immediate rise in metabolic turnover associated with the abrupt restoration of normothermia. Here we report the first clinical case of gradual resumption of graft temperature upon ex vivo machine perfusion from hypothermia up to normothermic conditions using cell‐free buffer as a perfusate. A kidney graft from an extended criteria donor was put on the machine after 12.5 hours of cold storage. During ex vivo perfusion, perfusion pressure and temperature were gradually elevated from 30 mm Hg and 8°C to 75 mm Hg and 35°C, respectively. Perfusate consisted of diluted Steen solution, oxygenated with 100% oxygen. Final flow rates at 35°C were 850 mL/min. The kidney was transplanted without complications and showed good immediate function. Serum creatinine fell from preoperative 720 µmol/L to 506 µmol/L during the first 24 hours after transplantation. Clearance after 1 week was 43.1 mL/min. Controlled oxygenated rewarming prior to transplantation can be performed up to normothermia without blood components or artificial oxygen carriers and may represent a promising tool to mitigate cold‐induced reperfusion injury or to evaluate graft performance.
Short term normothermic reconditioning by machine perfusion after cold storage has shown beneficial effects in renal transplantation models. Systematic investigations concerning the inclusion of washed erythrocytes as oxygen carriers are lacking in this context. Porcine kidneys were subjected to 20 h of static cold storage. Prior to reperfusion, grafts were put on a machine for 2 h of oxygenated (95% O2; 5% CO2) rewarming perfusion. In one group (n = 6) washed erythrocytes were added to the perfusate after temperature has reached 20°C; the other group (n = 6) was run without additives. Control kidneys (n = 6) were immediately reperfused without treatment. Upon reperfusion in vitro, a more than twofold improvement of renal clearance of creatinine, urinary protein loss, fractional excretion of sodium, efficiency of oxygen utilization (TNa/VO2) and a significant reduction of innate immune activation (HMGB1, tenascin C, expression of TLR4) was seen after machine perfusion, compared with the controls. However, no advantage could be obtained by the addition of erythrocytes and inner cortical tissue pO2 always remained above normal values during cell‐free machine perfusion. Our data strongly argue in favor of a rewarming perfusion of cold stored donor kidneys but do not substantiate an indication for adding oxygen carriers in this particular setting.
Controlled oxygenated rewarming (COR) up to 20°C during ex vivo machine perfusion limits reperfusion-induced tissue injury upon graft implantation. Rewarming up to normothermia might add further benefits and provide better prediction of posttransplantation organ function. The effect of 90 minutes of oxygenated machine perfusion with Aqix RS-I after cold storage combined with gentle rewarming up to 20°C (COR20) or 35°C (COR35) was studied in rat livers and compared with cold storage alone (CS, n = 6, resp). Postpreservation recovery was evaluated upon warm reperfusion using an established in vitro system. COR generally resulted in significantly improved energetic recovery, increased bile flow, less activities alanine aminotransferase (ALT) release, and improved histopathology upon reperfusion as compared to only cold-stored livers, without significant differences between COR20 and COR35.Parameters obtained during COR, especially during COR35, also allowed for prediction of hepatic recovery upon reperfusion. For instance, ulterior bile production upon reperfusion was found closely correlated to bile flow observed already during COR35 (R 2 = 0.91). COR significantly improved liver quality after static cold storage. Elevation of machine perfusion temperature up to 35°C may prove promising to refine ex vivo evaluation of the graft prior to transplantation. K E Y W O R D Scontrolled oxygenated rewarming, liver preservation, machine perfusion, organ reconditioning | INTRODUCTIONOne of the major restrictions in transplantation medicine is the limited number of available donor organs. Due to this imbalance between donor organs and waiting recipients, the criteria of organ selection were extended and grafts of lesser quality became increasingly accepted to be transplanted. 1 The use of these "less-than-optimal" grafts provides new challenges in transplantation research with regard to organ preservation and conditioning. 2 New ex vivo strategies for maintenance and improvement of organ function could prevent storage and reperfusion-induced tissue injury and could therefore result in decreased post-transplantation graft dys-or nonfunction. 3Organ preservation traditionally includes flush-out with appropriate preservation solutions followed by cold storage under hypoxic conditions. 4 Problems associated with this technique are hypoxiainduced apoptotic events as well as activation of pro-inflammatory mediators, which influence post-transplantation organ function and integrity. 5 Previous research evidenced that main destructive effects rather establish during exposure of organs to blood circulation after implantation than during the ischemic cold storage period itself. 6This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Background. Normothermic machine perfusion (NMP) provides a promising strategy for preservation and conditioning of marginal organ grafts. However, at present, high logistic effort limits normothermic renal perfusion to a short, postponed machine perfusion at site of the recipient transplant center. Thus, organ preservation during transportation still takes place under hypothermic conditions, leading to significantly reduced efficacy of NMP. Recently, it was shown that gentle and controlled warming up of cold stored kidneys compensates for hypothermic induced damage in comparison to end ischemic NMP. This study aims to compare controlled oxygenated rewarming (COR) with continuous upfront normothermic perfusion in a porcine model of transplantation. Methods. Following exposure to 30 min of warm ischemia, kidneys (n = 6/group) were removed and either cold stored for 8 h (cold storage [CS]), cold stored for 6 h with subsequent controlled rewarming up to 35 °C for 2 h (COR), or directly subjected to 8 h of continuous NMP. Kidney function was evaluated using a preclinical autotransplant model with follow-up for 7 d. Results. NMP and COR both improved renal function in comparison to CS and displayed similar serum creatinine and urea levels during follow-up. COR resulted in less tenascin C expression in the tissue compared with CS, indicating reduced proinflammatory upregulation in the graft by gentle rewarming. Conclusions. COR seems to be a potential alternative in clinical application of NMP, thereby providing logistic ease and usability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.