Over the past century, many of the world's major rivers have been modified for the purposes of flood mitigation, power generation and commercial navigation. Engineering modifications to the Mississippi River system have altered the river's sediment levels and channel morphology, but the influence of these modifications on flood hazard is debated. Detecting and attributing changes in river discharge is challenging because instrumental streamflow records are often too short to evaluate the range of natural hydrological variability before the establishment of flood mitigation infrastructure. Here we show that multi-decadal trends of flood hazard on the lower Mississippi River are strongly modulated by dynamical modes of climate variability, particularly the El Niño-Southern Oscillation and the Atlantic Multidecadal Oscillation, but that the artificial channelization (confinement to a straightened channel) has greatly amplified flood magnitudes over the past century. Our results, based on a multi-proxy reconstruction of flood frequency and magnitude spanning the past 500 years, reveal that the magnitude of the 100-year flood (a flood with a 1 per cent chance of being exceeded in any year) has increased by 20 per cent over those five centuries, with about 75 per cent of this increase attributed to river engineering. We conclude that the interaction of human alterations to the Mississippi River system with dynamical modes of climate variability has elevated the current flood hazard to levels that are unprecedented within the past five centuries.
Hurricanes cause substantial loss of life and resources in coastal areas. Unfortunately, historical hurricane records are too short and incomplete to capture hurricane-climate interactions on multi-decadal and longer timescales. Coarse-grained, hurricane-induced deposits preserved in blue holes in the Caribbean can provide records of past hurricane activity extending back thousands of years. Here we present a high resolution record of intense hurricane events over the past 1500 years from a blue hole on South Andros Island on the Great Bahama Bank. This record is corroborated by shorter reconstructions from cores collected at two nearby blue holes. The record contains coarse-grained event deposits attributable to known historical hurricane strikes within age uncertainties. Over the past 1500 years, South Andros shows evidence of four active periods of hurricane activity. None of these active intervals occurred in the past 163 years. We suggest that Intertropical Convergence Zone position modulates hurricane activity on the island based on a correlation with Cariaco Basin titanium concentrations. An anomalous gap in activity on South Andros Island in the early 13th century corresponds to a period of increased volcanism. The patterns of hurricane activity reconstructed from South Andros Island closely match those from the northeastern Gulf of Mexico but are anti-phased with records from New England. We suggest that either changes in local environmental conditions (e.g., SSTs) or a northeastward shift in storm tracks can account for the increased activity in the western North Atlantic when the Gulf of Mexico and southeastern Caribbean are less active.
Abstract. Datasets from a 4-year monitoring effort at Lake Peters, a glacier-fed lake in Arctic Alaska, are described and presented with accompanying methods, biases, and corrections. Three meteorological stations documented air temperature, relative humidity, and rainfall at different elevations in the Lake Peters watershed. Data from ablation stake stations on Chamberlin Glacier were used to quantify glacial melt, and measurements from two hydrological stations were used to reconstruct continuous discharge for the primary inflows to Lake Peters, Carnivore and Chamberlin creeks. The lake's thermal structure was monitored using a network of temperature sensors on moorings, the lake's water level was recorded using pressure sensors, and sedimentary inputs to the lake were documented by sediment traps. We demonstrate the utility of these datasets by examining a flood event in July 2015, though other uses include studying intra- and inter-annual trends in this weather–glacier–river–lake system, contextualizing interpretations of lake sediment cores, and providing background for modeling studies. All DOI-referenced datasets described in this paper are archived at the National Science Foundation Arctic Data Center at the following overview web page for the project: https://arcticdata.io/catalog/view/urn:uuid:df1eace5-4dd7-4517-a985-e4113c631044 (last access: 13 October 2019; Kaufman et al., 2019f).
The lower Mississippi River is an economic corridor of the United States, and understanding how its streamflow will respond to projected changes in climate is important for flood mitigation and infrastructure planning (
19Datasets from a four-year monitoring effort at Lake Peters, a glacier-fed lake in Arctic Alaska, 20 are described and presented with accompanying methods, biases, and corrections. Three 21 meteorological stations documented air temperature, relative humidity, and rainfall at different 22 elevations in the Lake Peters watershed. Data from ablation stake stations on Chamberlin 23 glacier were used to quantify glacial melt, and measurements from two hydrological stations 24 were used to reconstruct continuous discharge for the two primary inflows to Lake Peters, 25Carnivore and Chamberlin Creeks. The lake's thermal structure was monitored using a network 26 of temperature sensors on moorings, the lake's water level was recorded using pressure 27 sensors, and sedimentary inputs to the lake were documented by sediment traps. We 28 demonstrate the utility of these datasets by examining a flood event in July 2015, though other 29 uses include studying intra-and inter-annual trends in this weather-glacier-river-lake system, 30 contextualizing interpretations of lakes sediment cores, and providing background for modeling 31 studies. All DOI-referenced datasets described in this manuscript are archived at the National 32 Science Foundation Arctic Data Center at the following overview webpage for the project: 33 https://arcticdata.io/catalog/view/urn:uuid:517b8679-20db-4c89-a29c-6410cbd08afe (Kaufman 34 et al., 2019e). 35
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.