Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the δf particle-in-cell method [S. E. Parker and W. W. Lee, Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.