Abstract. Since 19 October 2016, and in the framework of Copernicus Marine Environment Monitoring Service (CMEMS), Mercator Ocean has delivered real-time daily services (weekly analyses and daily 10-day forecasts) with a new global 1∕12∘ high-resolution (eddy-resolving) monitoring and forecasting system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a three-dimensional multivariate modal decomposition of the background error. Along-track altimeter data, satellite sea surface temperature, sea ice concentration, and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-VAR scheme provides a correction for the slowly evolving large-scale biases in temperature and salinity. This paper describes the recent updates applied to the system and discusses the importance of fine tuning an ocean monitoring and forecasting system. It details more particularly the impact of the initialization, the correction of precipitation, the assimilation of climatological temperature and salinity in the deep ocean, the construction of the background error covariance and the adaptive tuning of observation error on increasing the realism of the analysis and forecasts. The scientific assessment of the ocean estimations are illustrated with diagnostics over some particular years, assorted with time series over the time period 2007–2016. The overall impact of the integration of all updates on the product quality is also discussed, highlighting a gain in performance and reliability of the current global monitoring and forecasting system compared to its previous version.
The data are assimilated by means of a reduced-order Kalman filter with a 3-D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. A 3-D-Var scheme provides a correction for the slowly evolving large-scale biases in temperature and salinity. Altimeter data, satellite sea surface temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. In addition to the quality control performed by data producers, the system carries out a proper quality control on temperature and salinity vertical profiles in order to minimise the risk of erroneous observed profiles being assimilated in the model. This paper describes the recent systems used by Mercator Océan and the validation procedure applied to current MyOcean systems as well as systems under development. The paper shows how refinements or adjustments to the system during the validation procedure affect its quality. Additionally, we show that quality checks (in situ, drifters) and data sources (satellite sea surface temperature) have as great an impact as the system design (model physics and assimilation parameters). The results of the scientific assessment are illustrated with diagnostics over the year 2010 mainly, assorted with time series over the 2007-2011 period. The validation procedure demonstrates the accuracy of MyOcean global products, whose quality is stable over time. All monitoring systems are close to altimetric observations with a forecast RMS difference of 7 cm. The update of the mean dynamic topography corrects local biases in the Indonesian Throughflow and in the western tropical Pacific. This improves also the subsurface currents at the Equator. The global systems give an accurate description of water masses almost everywhere. Between 0 and 500 m, departures from in situ observations rarely exceed 1 • C and 0.2 psu. The assimilation of an improved sea surface temperature product aims to better represent the sea ice concentration and the sea ice edge. The systems under development are still suffering from a drift which can only be detected by means of a 5-yr hindcast, preventing us from upgrading them in real time. This emphasizes the need to pursue research while building future systems for MyOcean2 forecasting.
GLORYS12 is a global eddy-resolving physical ocean and sea ice reanalysis at 1/12° horizontal resolution covering the 1993-present altimetry period, designed and implemented in the framework of the Copernicus Marine Environment Monitoring Service (CMEMS). The model component is the NEMO platform driven at the surface by atmospheric conditions from the ECMWF ERA-Interim reanalysis. Ocean observations are assimilated by means of a reduced-order Kalman filter. Along track altimeter sea level anomaly, satellite sea surface temperature and sea ice concentration, as well as in situ temperature and salinity vertical profiles are jointly assimilated. A 3D-VAR scheme provides an additional correction for the slowly-evolving large-scale biases in temperature and salinity. The performance of the reanalysis shows a clear dependency on the time-dependent in situ observation system. The general assessment of GLORYS12 highlights a level of performance at the state-of-the-art and the capacity of the system to capture the main expected climatic interannual variability signals for ocean and sea ice, the general circulation and the inter-basins exchanges. In terms of trends, GLORYS12 shows a higher than observed warming trend together with a slightly lower than observed global mean sea level rise. Comparisons made with an experiment carried out on the same platform without assimilation show the benefit of data assimilation in controlling water mass properties and sea ice cover and their low frequency variability. Moreover, GLORYS12 represents particularly well the small-scale variability of surface dynamics and compares well with independent (non-assimilated) data. Comparisons made with a twin experiment carried out at 1/4° resolution allows characterizing and quantifying the strengthened contribution of the 1/12° resolution onto the downscaled dynamics. GLORYS12 provides a reliable physical ocean state for climate variability and supports applications such as seasonal forecasts. In addition, this reanalysis has strong assets to serve regional applications and provide relevant physical conditions for applications such as marine biogeochemistry. In the near future, GLORYS12 will be maintained to be as close as possible to real time and could therefore provide relevant and continuous reference past ocean states for many operational applications.
As part of the work of the GODAE OceanView Inter-comparison and Validation Task Team (IV-TT), 6 global ocean forecasting systems spread across 5 operational oceanography forecast centres were inter-compared using a common set of observations as a proxy for the truth. The 'Class 4' in the title refers to a set of forecast verification metrics defined in the MERSEA-IP/GODAE internal metrics document (Hernandez 2007), the defining feature of which is that comparisons between forecasts and observations take place in observation space. This approach is seen as a departure from other diagnostic approaches such as analysing model trends or innovation statistics, and is commonly used in the atmospheric community. The physical parameters involved in the comparison are sea surface temperature (SST), sub-surface temperature, sub-surface salinity and sea level anomaly (SLA). SST was measured using in-situ observations obtained from USGODAE, sub-surface conditions were compared to Argo profiles, while sea level anomaly was measured by several satellite altimeters courtesy of AVISO. The 5 forecast centres involved in the project were Met Office, Australian Bureau of Meteorology, Mercator Océan, Environment Canada and NOAA/NWS/NCEP. Combining Met Office, Mercator Océan and Environment Canada forecasts into a mixed resolution multi-model ensemble produces estimates of the ocean state which have better accuracy and associativity properties for SST, SLA and temperature profiles than any individual ensemble component.
(2015) Recent progress in performance evaluations and near real-time assessment of operational ocean products, Journal of Operational Oceanography, 8:sup2, s221-s238,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.