It is standard to assume that the Wigner distribution of a mixed quantum state consisting of square-integrable functions is a quasi-probability distribution, i.e., that its integral is one and that the marginal properties are satisfied. However, this is generally not true. We introduced a class of quantum states for which this property is satisfied; these states are dubbed “Feichtinger states” because they are defined in terms of a class of functional spaces (modulation spaces) introduced in the 1980s by H. Feichtinger. The properties of these states were studied, giving us the opportunity to prove an extension to the general case of a result due to Jaynes on the non-uniqueness of the statistical ensemble, generating a density operator.
T ime-symmetric quantum mechanics can be described in the Weyl-Wigner-Moyal phase space formalism by using the properties of the cross-terms appearing in the Wigner distribution of a sum of states. These properties show the appearance of a strongly oscillating interference between the preselected and post-selected states. It is interesting to note that the knowledge of this interference term is sufficient to reconstruct both states.
We apply the notion of polar duality from convex geometry to the study of quantum covariance ellipsoids in symplectic phase space. We consider in particular the case of “quantum blobs” introduced in previous work; quantum blobs are the smallest symplectic invariant regions of the phase space compatible with the uncertainty principle in its strong Robertson–Schrödinger form. We show that these phase space units can be characterized by a simple condition of reflexivity using polar duality, thus improving previous results. We apply these geometric constructions to the characterization of pure Gaussian states in terms of partial information on the covariance ellipsoid, which allows us to formulate statements related to symplectic tomography.
We use the notion of polar duality from convex geometry and the theory of Lagrangian planes from symplectic geometry to construct a fiber bundle over ellipsoids that can be viewed as a quantum-mechanical substitute for the classical symplectic phase space. The total space of this fiber bundle consists of geometric quantum states, products of convex bodies carried by Lagrangian planes by their polar duals with respect to a second transversal Lagrangian plane. Using the theory of the John ellipsoid we relate these geometric quantum states to the notion of “quantum blobs” introduced in previous work; quantum blobs are the smallest symplectic invariant regions of the phase space compatible with the uncertainty principle. We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets. We emphasize that the uncertainty principle appears in this paper as geometric property of the states we define, and is not expressed in terms of variances and covariances, the use of which was criticized by Hilgevoord and Uffink.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.