The Antarctic Dry Valleys are unable to support higher plant and animal life and so microbial communities dominate biotic ecosystem processes. Soil communities are well characterized, but rocky surfaces have also emerged as a significant microbial habitat. Here, we identify extensive colonization of weathered granite on a landscape scale by chasmoendolithic microbial communities. A transect across north-facing and south-facing slopes plus valley floor moraines revealed 30-100 % of available substrate was colonized up to an altitude of 800 m. Communities were assessed at a multidomain level and were clearly distinct from those in surrounding soils and other rock-inhabiting cryptoendolithic and hypolithic communities. All colonized rocks were dominated by the cyanobacterial genus Leptolyngbya (Oscillatoriales), with heterotrophic bacteria, archaea, algae, and fungi also identified. Striking patterns in community distribution were evident with regard to microclimate as determined by aspect. Notably, a shift in cyanobacterial assemblages from Chroococcidiopsis-like phylotypes (Pleurocapsales) on colder-drier slopes, to Synechococcus-like phylotypes (Chroococcales) on warmer-wetter slopes. Greater relative abundance of known desiccation-tolerant bacterial taxa occurred on colder-drier slopes. Archaeal phylotypes indicated halotolerant taxa and also taxa possibly derived from nearby volcanic sources. Among the eukaryotes, the lichen photobiont Trebouxia (Chlorophyta) was ubiquitous, but known lichen-forming fungi were not recovered. Instead, fungal assemblages were dominated by ascomycetous yeasts. We conclude that chasmoendoliths likely constitute a significant geobiological phenomenon at lower elevations in granite-dominated Antarctic Dry Valley systems.
Photosynthesis in eukaryotes first arose through phagocytotic processes wherein an engulfed cyanobacterium was not digested, but instead became a permanent organelle. Other photosynthetic lineages then arose when eukaryotic cells engulfed other already photosynthetic eukaryotic cells. Some of the resulting lineages subsequently lost their ability for phagocytosis, while many others maintained the ability to do both processes. These mixotrophic taxa have more complicated ecological roles, in that they are both primary producers and consumers that can shift more towards producing the organic matter that forms the base of aquatic food chains, or towards respiring and releasing CO 2 . We still have much to learn about which taxa are predatory mixotrophs as well as about the physiological consequences of this lifestyle, in part, because much of the diversity of unicellular eukaryotes in aquatic ecosystems remains uncultured. Here, we discuss existing methods for studying predatory mixotrophs, their individual biases, and how single-cell approaches can enhance knowledge of these important taxa. The question remains what the gold standard should be for assigning a mixotrophic status to ill-characterized or uncultured taxa—a status that dictates how organisms are incorporated into carbon cycle models and how their ecosystem roles may shift in future lakes and oceans. This article is part of a discussion meeting issue ‘Single cell ecology’.
The marine picoeukaryote Bathycoccus prasinos has been considered a cosmopolitan alga, although recent studies indicate two ecotypes exist, Clade BI (B. prasinos) and Clade BII. Viruses that infect Bathycoccus Clade BI are known (BpVs), but not that infect BII. We isolated three dsDNA prasinoviruses from the Sargasso Sea against Clade BII isolate RCC716. The BII-Vs do not infect BI, and two (BII-V2 and BII-V3) have larger genomes (~210 kb) than BI-Viruses and BII-V1. BII-Vs share ~90% of their proteins, and between 65% to 83% of their proteins with sequenced BpVs. Phylogenomic reconstructions and PolB analyses establish close-relatedness of BII-V2 and BII-V3, yet BII-V2 has 10-fold higher infectivity and induces greater mortality on host isolate RCC716. BII-V1 is more distant, has a shorter latent period, and infects both available BII isolates, RCC716 and RCC715, while BII-V2 and BII-V3 do not exhibit productive infection of the latter in our experiments. Global metagenome analyses show Clade BI and BII algal relative abundances correlate positively with their respective viruses. The distributions delineate BI/BpVs as occupying lower temperature mesotrophic and coastal systems, whereas BII/BII-Vs occupy warmer temperature, higher salinity ecosystems. Accordingly, with molecular diagnostic support, we name Clade BII Bathycoccus calidus sp. nov. and propose that molecular diversity within this new species likely connects to the differentiated host-virus dynamics observed in our time course experiments. Overall, the tightly linked biogeography of Bathycoccus host and virus clades observed herein supports species-level host specificity, with strain-level variations in infection parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.