Human disease caused by highly pathogenic avian influenza (H5N1) is associated with fulminant viral pneumonia and mortality rates in excess of 60%. Cytokine dysregulation is thought to contribute to its pathogenesis. In comparison with human seasonal influenza (H1N1) viruses, clade 1, 2.1, and 2.2 H5N1 viruses induced higher levels of tumor necrosis factor-α in primary human macrophages. To understand viral genetic determinants responsible for this hyperinduction of cytokines, we constructed recombinant viruses containing different combinations of genes from high-cytokine (A/Vietnam/1203/04) and low-cytokine (A/WSN/33) phenotype H1N1 viruses and tested their cytokine-inducing phenotype in human macrophages. Our results suggest that the H5N1 polymerase gene segments, and to a lesser extent the NS gene segment, contribute to cytokine hyperinduction in human macrophages and that a putative H5 pandemic virus that may arise through genetic reassortment between H5N1 and one of the current seasonal influenza viruses may have a markedly altered cytokine phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.