Background: The present case–control study evaluated the association of PON1 gene polymorphisms and enzyme activity in the western Indian population. Materials & methods: Angiographically proven coronary artery disease (CAD) formed the cases. PON1 polymorphisms (Q192R, L55M) and enzymatic activity (paraoxonase) were assessed. Results: A total of 502 participants (251 per group) were studied. PON1 Q192R and L55M polymorphisms were not associated with the risk of CAD. Notably, a weak association was observed between Q192R polymorphisms and the risk of CAD. CAD patients had significantly lower PON1 enzymatic activity (U/L) as compared with the controls regardless of the genotype. Conclusion: Low serum PON1 activity was confirmed to be an independent predictor for the risk of CAD.
BackgroundGenetic polymorphisms in drug metabolizing enzymes (DMEs) impart distinct drug metabolizing capacity and a unique phenotype to an individual. Phenytoin has large inter-individual variability in metabolism due to polymorphisms in CYP2C9 and CYP2C19. As per Ayurveda, Prakriti imparts a unique phenotype to an individual.ObjectiveTo assess whether Prakriti can substitute phenotyping [therapeutic drug monitoring (TDM)] and genotyping in individualizing therapy with phenytoin in epilepsy patients.Methods and materialsThis was a cross-sectional study conducted over a period of three years. Prakriti was assessed using standardized and validated software. Polymorphisms in CYP2C9 and CYP2C19 were assessed using Polymerase Chain Reaction (PCR)-Restriction fragment length polymorphism (PCR-RFLP). Plasma concentrations of phenytoin (phenotype) were determined using reverse phase-high performance liquid chromatography (RF-HPLC).ResultsTotal 351 patients were enrolled for the study. Kapha vata (KV) (39%) was the predominantly observed Prakriti followed by vata kapha (VK) (20.8%) and vata pitta (VP) (8.83%) among the patients. The CYP2C9 and CYP2C19 genotype distributions were in accordance with Hardy–Weinberg equilibrium. There was no association between Prakriti and genotypes and Prakriti and phenotype (p > 0.05 each). Patients with CYP2C9 *1/*3 genotype were thrice more likely to have toxic plasma concentrations of phenytoin as compared to those with wild-type genotype (*1/*1) (Adjusted odds ratio – 3.36; 95% C.I. 1.61, 7.01). However, no such association was observed between polymorphisms of CYP2C19 and phenotype.ConclusionsWe did not find any association between Prakriti and either phenotype or genotypes suggesting that Prakriti assessment would be of limited utility in individualizing phenytoin therapy in epilepsy patients.
Human paraoxonase 1 (PON1) enzyme protects against atherosclerosis by preventing low-density lipoprotein from oxidative modification. Upregulation of PON1 enzymatic activity is suggested to contribute to atheroprotective potential of statins. Glutamine (Q) to arginine (R) at site 192 and leucine (L) to methionine (M) substitution at site 55 polymorphisms influence the PON1 activity. The study assessed the role of PON1 polymorphisms on lipid-lowering and PON1-modulating activity of statins in a Western Indian cohort of patients with dyslipidemia. Lipid profile and PON1 activity were determined at baseline and 3 months after initiation of statin treatment. PON1 genotypes (QQ, QR, RR; LL, LM, and MM) were determined by PCR-RFLP. Paraoxon was used as a substrate for assessing PON1 activity by spectrophotometry. A total of 140 statin-naïve patients were enrolled; of them, 116 were available for final analysis. Fifty-seven (50%) had QQ, 39 (35%) had QR, and 17 (15%) had RR genotypes. Seventy-six (67%) patients had LL, 35 (31%) had LM, and 2 (2%) had MM genotypes. We observed no impact of PON1 polymorphisms on lipid parameters posttreatment. A significant increase was observed in the serum PON1 activity from a median (range) of 47.92 U/L (9.03–181.25) to 72.22 U/L (7.64–244.44) ( P < 0.05) following statin treatment, which was independent from high-density lipoprotein (HDL) concentration. This increase was significantly greater in QQ compared to QR and RR genotypes ( P = 0.01). To conclude, the important antioxidant properties of statins are exerted via the rise in serum PON1 activity, independent of HDL cholesterol concentrations. The increase was greater in individuals with QQ genotype. Future large-scale studies will validate the premise that QQ homozygotes see added benefits from statin treatment compared to R carriers. In the meantime, PON1 enzymatic activity remains an important marker to be measured while assessing pleotropic effects of statins in CAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.