Nearly 17.5 million deaths occur due to cardiovascular diseases throughout the world. If we could create such a mechanism or system that could tell people about their heart condition based on their medical history and warn them of any risk than it could be of huge help. In our work, we will use machine learning algorithms to forecast the heart disease risk factor for a person depending upon some attributes in their medical history. The data mining technique Naive Bayes, Decision tree, Support Vector Machine, and Logistic Regression is analyzed on the Heart disease database. The accuracy of different algorithms is measured and then the algorithms are compared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.