Background: India was one of the countries to institute strict measures for Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the early phase. Since, then, the epidemic growth trajectory was slow before registering an explosion of cases due to local cluster transmissions. Methods: We estimated the growth rate and doubling time of SARS-CoV-2 for India and high burden states using crowdsourced time series data. Further, we also estimated the Basic Reproductive Number (R0) and Time-dependent Reproductive number (Rt) using serial intervals from the data. We compared the R0 estimated from five different methods and R0 from SB was further used in the analysis. We modified standard Susceptible-Infectious-Recovered (SIR) models to SIR/Death (SIRD) model to accommodate deaths using R0 with the sequential Bayesian method for simulation in SIRD models. Results: On average, 2.8 individuals were infected by an index case. The mean serial interval was 3.9 days. The R0 estimated from different methods ranged from 1.43 to 1.85. The mean time to recovery was 14 ± 5.3 days. The daily epidemic growth rate of India was 0.16 [95% CI; 0.14, 0.17] with a doubling time of 4.30 days [95% CI; 3.96, 4.70]. From the SIRD model, it can be deduced that the peak of SARS-CoV-2 in India will be around mid-July to early August 2020 with around 12.5% of the population likely to be infected at the peak time. Conclusion: The pattern of spread of SARS-CoV-2 in India is suggestive of community transmission. There is a need to increase funds for infectious disease research and epidemiologic studies. All the current gains may be reversed if air travel and social mixing resume rapidly. For the time being, these must be resumed only in a phased manner and should be back to normal levels only after we are prepared to deal with the disease with efficient tools like vaccines or medicine.
BACKGROUNDIndia was one of the countries to institute strict measures for SARS-CoV-2 control in early phase. Since, then, the epidemic growth trajectory was slow before registering an explosion of cases due to local cluster transmissions. METHODSWe estimated growth rate and doubling time of SARS-CoV-2 for India and high burden states using crowd sourced time series data. Further, we also estimated Basic Reproductive Number (R0) and time dependent reproductive number (Rt) using serial intervals from the data. We compared the R0 estimated from five different methods and R0 from SB was further used in analysis. We modified standard SIR models to SIRD model to accommodate deaths using R0 with the Sequential Bayesian method (SBM) for simulation in SIRD models. RESULTSOn an average, 2.8 individuals were infected by an index case. The mean serial interval was 3.9 days. The R0 estimated from different methods ranged from 1.43 to 1.85. The mean time to recovery was 14 ± 5.3 days. Daily epidemic growth rate of India was 0.16 [95%CI; 0.14, 0.17] with a doubling time of 4.30 days [95%CI; 3.96, 4.70]. From the SIRD model, it can be deduced that the peak of SARS-CoV-2 in India will be around mid-July to early August 2020 with around 12.5% of population likely to be infected at the peak time. CONCLUSIONSAll rights reserved. No reuse allowed without permission.
Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank cohort and the self-reported migraine phenotype from the 23andMe resource using the metaUSAT for genetically correlated phenotypes (N=397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and 4 loci were newly identified. The LRP1-STAT6-SDR9C7 region in chromosome 12 was the most significantly associated locus with a leading P value of 1.24 x 10-62 of rs11172113. The ONECUT2 gene locus in chromosome 18 was the strongest signal among the 4 new loci with a P value of 1.29 x 10-9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more new variants for headaches. This study has paved way for a large GWAS meta-analysis study involving cohorts of different, though genetically correlated headache phenotypes.
Headache is one of the commonest complaints that doctors need to address in clinical settings. The genetic mechanisms of different types of headache are not well understood while it has been suggested that self-reported headache and self-reported migraine were genetically correlated. In this study, we performed a meta-analysis of genome-wide association studies (GWAS) on the self-reported headache phenotype from the UK Biobank and the self-reported migraine phenotype from the 23andMe using the Unified Score-based Association Test (metaUSAT) software for genetically correlated phenotypes (N = 397,385). We identified 38 loci for headaches, of which 34 loci have been reported before and four loci were newly suggested. The LDL receptor related protein 1 (LRP1)—Signal Transducer and Activator of Transcription 6 (STAT6)—Short chainDehydrogenase/Reductase family 9C member 7 (SDR9C7) region in chromosome 12 was the most significantly associated locus with a leading p value of 1.24 × 10–62 of rs11172113. The One Cut homeobox 2 (ONECUT2) gene locus in chromosome 18 was the strongest signal among the four new loci with a p value of 1.29 × 10–9 of rs673939. Our study demonstrated that the genetically correlated phenotypes of self-reported headache and self-reported migraine can be meta-analysed together in theory and in practice to boost study power to identify more variants for headaches. This study has paved way for a large GWAS meta-analysis involving cohorts of different while genetically correlated headache phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.